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SUMMARYU
(1) TECHNICAL OBJECTIVES AND ISSUES UNDER INVESTIGATION:

I Working with realistic modal descriptions of vibratory mechanical systems, the technical
objective was to design active damping controllers. The systems of interest are multiple input,
multiple output (MIMO), heavily damped structures with complex modes. The control objective
is to suppress the effects of impulsive disturbances within a short period of time as well as toE provide a specified reduction of vibration due to ever-present stochastic disturbances.

Systems with complex modes cannot be decoupled exactly. One issue that was resolved
was the impracticality of using a controller for an approximately decoupled system. Simulations
showed that the desired amount of damping could not be achieved with this controller due to
stability problems caused by the approximations.

3 The technical issue regarding state estimation was to develop an optimal estimator for the
system driven by non-gaussian stochastic signals.I

(2) TECHNICAL APPROACHES:

I The team effort can be viewed as three interactive parts: one group investigating the
robust control issues; one, the non-gaussian estimation problem and a third group working with
a mechanical plate experiment, generating data and identification algorithms. The experimentalmodel was constructed in the M.E. Department under DARPA funding. Our group interacted
well with the M.E. group, sharing ideas and methods where relevant.

I The robust control investigators used modern analysis and synthesis tools to incorporate
the required performance directly into the design procedure. The approach to handle the non-
gaussian estimation problem was the use of a modified gaussian sum.

(3) SUMMARY OF ACCOMPLISHMENTS:

i General Discussion

Our effort began with the design of a baseline controller. The system of interest was a
MIMO, heavily damped structure with complex modes, and the control objective was to suppress
impulsive disturbances in a given time interval and to provide a specified degree of suppression
to an ever-present stochastic disturbance for which we have frequency domain information. In
order to limit the complexity of our controller, a decoupled, independent modal control approach
was explored. Although a system with complex modes cannot be decoupled exactly, an attempt
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I
was made to design a controller for an approximately decoupled system. Simulations showed,
however, that the desired increase in damping could not be achieved with this controller due to
stability problems brought about by the approximations. The decoupling approach was
abandoned and replaced by a standard estimator-feedback control structure. To address both I
types of disturbances simultaneously, an LQG/LTR methodology was used, after suitable
modification to account for the presence of the feed-through term in our system that was due to
the use of accelerometers as sensors. This provided an acceptable baseline solution to our I
problem to which we could compare our ideas for improvement. One area in which the baseline
design was deficient was robust stability to unstructured uncertainty. The solution to this
problem was to incorporate robust stability and performance requirements directly into the I
design procedure.

The Problem of Structured Uncertainties I
Robust control methods were studied for application to vibrational systems whose

uncertainties have known structure. Structured uncertainties arise, for example, in plants with
uncertain parameters in the state space model. Therefore, vibrational systems with uncertain
modal frequencies and damping ratios are well suited for structured uncertainty designs. The
purpose of such methods is to take advantage of the structure of plant uncertainties in order to
reduce the conservativeness of the compensator design. Structured uncertainty designs
accomplish this by guaranteeing stability robustness only to uncertainties of the specified
structure, thereby sacrificing as little performance as possible.

The chosen design method is a refinement of a modified Linear Quadratic Gaussian
method by Jong-Yin Lin and others. Lin models parameter uncertainties by isolating constants I
of unknown magnitude in ficticious feedback paths and treating the return signals as gaussian
white noise entering the plant with direction determined by the nature of the uncertainty. The
proposed method exploits the fact that these return signals are neither gaussian, nor white noise.
Rather, they depend on the magnitudes of the states, controls, and measurements of the system.
A more accurate modeling of the parameter uncertainties will normally yield compensator 3
designs with better performance for the same level of stability robustness. This improvement
is achieved without an increase in compensator order or a loss of optimality. Also, the optimal
reduced-order compensator equations of Hyland and Bernstein adapt naturally to the proposed I
design method and allow an additional tradeoff between control system performance and
compensator order reduction.

Results in Non-Gaussian Estimation

Optimal state estimation has been accomplished for a linear system driven by an unknown i
non-gaussian input with additive white noise, and observed by measurements containing
feedthrough of the same nonGaussian input and corrupted by additional white Gaussian noise.
One approach considered that can cope with the non-gaussian nature of the input signal is the
"gaussian sum technique", where the probability density function of the non-gaussian input is
approximated by a weighted sum of gaussian density functions. An adaptive filter based on this
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technique, however, has the limitation that the number of terms in the gaussian sum grows at
each iteration of the filter. A modified approach has been developed in this research which

I results in an adaptive filter with a fixed number of terms at each iteration.

As a result of this modified gaussian sum research, a necessary condition for effective
estimation has been established. It has been found that the value of the DC gain of the linear
system provides a simple test to determine whether or not the modified estimation scheme will
prove effective. Several alternate estimation methods have been established when this conditionU is not met. Also, a suboptimal method of tuning the parameters of the adaptive filter structure
to provide enhanced performance has been investigated.

This modified estimation technique proved effective in the problem of robust modal controlof large, MIMO, heavily damped structures. The adaptive filter was found to provide high
quality estimates of modal position and velocity required by the robust control system.

I Progress on System Identification

Effective and efficient system identification techniques for discrete-time, linear, MIMO,Iheavily damped modal systems from input/output sequences have been developed and simulated.
This facilitated a better understanding of the possible errors in the estimated model and a more
accurate compensator and estimator design.

Three different time domain identification techniques have been developed in this
-- research. The first technique is known as Pseudo-Linear Identification (PLID) for simultaneous

state estimation and parameter identification. The method involves forming an augmented
system that is nonlinear, due to the multiplication of the state by parameters. The augmentedI state vector is estimated by a Kalman filter, which has a state matrix that depends on the input
and output data.

The second algorithm developed determines the state-space model in a pseudo-
controllable/observable canonical form. The advantage of this technique is its ability to
determine structural information, which means determination of controllability/observability
indices. A MIMO system is obtained in pseudo controllable/observable form, based on a set of
admissible pseudo- controllable/observable indices.

I The last identification algorithm developed in this research is a computational
simplification of the Eigensystem Realization Algorithm. The ERA algorithm involves singularI value decomposition of the Hankel matrix formed by the Markov parameters. This Hankel
matrix grows as the system order and number of inputs and outputs increase. With the
computational simplification, a minimal state space representation is obtained by a simple and
appropriate selection of the columns or rows from the Hankel matrix. The identified state space
model is obtained in a canonical form.

These system identification techniques have been verified on a simply supported
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rectangular plate experimental set-up. The results achieved were very encouraging. These 3
techniques could be easily applied to a more complex modal structure. I

(4) SIGNIFICANCE OF ACCOMPLISHMENTS

This project has provided results in the direction of a complete control algorithm for i
structural vibration damping. When the various research results came together, the control
algorithm was found to be capable of reducing critical modes of vibration in response to
persistent or impulsive non-gaussian disturbances.

I
(5) PUBLICATIONS AND PRESENTATIONS: I
Copies of the following papers are included with this report.

Journal Papers:

"A Computationally Efficient Technique for State Estimation of Nonlinear Systems",
Automatica, February 1992, (J.S.Dhingra, R.L.Moose, H.F.VanLandingham and
T.A.Lauzon).

"Nonlinear Effects of a Modal Domain Optical Fiber Sensor in a Vibration Suppression
Control Loop for a Flexible Structure", ASME Journal of Vibration and Acoustics, to
appear. (D. K. Lindner, G. A. Zvonar, W. T. Baumann and P. L. Delos). I
"A Modified Gaussian-Sum Approach to Estimation of Non-Gaussian Stochastic Signals",
IEEE Transactions on Aerospace and Electronic Systems, to appear (July 1992). (M. J.
Caputi and R. L. Moose). I

International Conference:

"Measurement and Control of Flexible Structures Using Distributed Sensors", 29th IEEE U
Conference on Decision and Control, December 1990. (D.K.Lindner, K.M. Reichard,
W.T.Baumann and M. F. Barsky ). I

"Application of Fuzzy Logic Control to Active Vibration Damping", Eighth VP & SU
Symposium on Dynamics and Control of Large Structures, May 1991. (A. Tsoukkas and
H. F. VanLandingham).

I
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0. Introduction

0.1 Purpose and Importance of This Work

I The purpose of this research is to explore two new and related methods of
designing compensators for the active control of uncertain systems. Both methods are

I designed to improve the robustness of a control system's stability and performance with
respect to uncertainty in selected parameters of the state-space model of the plant.

I They accomplish this by modeling the effect of uncertainties as accurately as possible
by fictitious noise sources while simultaneously reducing sensitivity by means of
additional penalties in the cost functional. The first method constructs the noise model

in the frequency domain, whereas the second formulates noise in the time domain. In
addition, both incorporate optimal order reduction directly into the design. These

I methods are expected to have general application to plants with uncertain state-space
parameters; however, they will be applied in this work to the problems involved in the

I suppression of disturbances in flexible structures, which suffer particularly from the
difficulties of large plant uncertainty and large compensator order.

I Modeling and identification of flexible structures, themselves, constitute a
difficult problem and an active area of research (e.g., Balas and Doyle 1990). The
prevalence of this type of research is an indicator that linear, finite-dimensional, time-

invariant (LFDTI) models of flexible structures are examples of highly uncertain plants,
and it points to the need for robust controllers for such systems.

Also, LFDTI models of flexible structures tend to be of very high order. Firstly,
since flexible structures are infinite-dimensional, it is desirable to consider as many

vibrational modes as possible in order to reduce the effect of unmodeled dynamics on
the control system. Secondly, it is frequently necessary to augment the plant with

i additional dynamics in order to model disturbances more accurately or to meet more
precise performance specifications. Disturbance modeling (e.g., Kwakernaak and Sivan
1972, sec. 1.11.4) is desirable when the disturbances are correlated and something is
known about their frequency content. This allows the exogenous signals to be modeled
by white noise processes (in the case of LQG-based designs), provided the disturbance

dynamics are appended to the plant at the disturbance inputs. Likewise, frequency-

shaped cost functionals (Gupta 1980) are used when the state and control weighting

matrices are functions of frequency. This is accomplished in the LQG framework by

1 1I
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appending dynamics to the plant at the controlled-variable outputs. It has been shown

(Sievers and von Flotow 1989) that these two extensions to LQG theory are duals and, I
in the single-input single-output (SISO) case, equivalents of one another. Also, the

same two methods are used for analogous purposes in X.-based design (e.g., Doyle 3
1984).

In either case, an LQG or %,,.-optimal compensator, being of the same order as 3
the augmented plant, must also be of high order. As a result, full-order controllers tend

to be of very high order and therefore place a great computational burden on the real- 3
time processor hardware. I
0.2 Research Objectives

The proposed parameter robust reduced-order control methods are described in

Chapter 1 and developed in Chapters 2 through 5. Then, the resulting designs are

applied to a continuous-time FDLTI model of a simply supported rectangular plate (in

Chapter 6), as well as to the actual hardware (in Chapter 7). The control system has

one control input actuator, one disturbance input actuator, and twelve accelerometer i
sensors. The state-space model of the plate has been derived from modal frequency and

modeshape data obtained by an identification procedure. This model is augmented by
the dynamics associated with a contol signal smoothing filter and a noise shaping filter

designed to reflect the characteristics of a colored noise disturbance. Analysis has

shown the stability of the closed-loop system to be most susceptible to errors in the U
natural frequencies and control input modeshape vector, and experimentation has
confirmed this. Therefore, emphasis is placed on making the system less sensitive to 3
errors in the parameters of the state-space model corresponding to these quantities.

There are three main objectives to this research. The first objective is to i
evaluate the efficiency of the performance/stability robustness tradeoff for the two

proposed design methods. This is done by comparing compensators designed by the 3
frequency-domain and time-domain noise modeling techniques (of Chapters 2 and 3,

respectively) with those designed by two existing methods discussed in Chapter 1: 3
LQG/PRE and multiplicative white noise modeling (without the auxiliary output

modeling feature used in Chapter 3). First, a parameter range is specified for which the

system must be stable. This parameter range is larger than the stability range obtained

2
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by the standard LQG design. Second, full-order compensators are designed by all four

"_ techniques to just meet this stability robustness specification, using the same

performance criterion and assumed exogenous noise covariances used by the LQG

i !design. Finally, it is determined how much performance was sacrificed to attain this

/ level of robustness by measuring the performance of the designs (i.e., the quadratic cost)3 ,,over the stability range of interest. This method is applied to a simple 1-mode model of

the plate in Chapter 6 to illustrate the design considerations involved. Uncertainties in

both the control input modeshape vector (i.e., the controller actuator location) and the

natural frequency are considered. In Chapter 7, a 4-mode model of the plate is analyzed

to determine the cause of the poor stability properties of the actual hardware. Then the

most suitable robust controller is selected and implemented on the plate.

The second objective is to investigate the extent to which the order of a standard

LQG compensator can be reduced for FDLTI models of the rectangular plate. When

one adds the states of a second-order smoothing filter and a noise shaping filter to the3 two states per vibrational mode of the plate, the high order of the plant becomes

apparent, as does the need for a reduced-order compensator. The procedure is as3] follows. First, a full-order LQG compensator is designed to provide satisfactory nominal

performance. Then reduced-order compensators are designed using the optimal

projection equations, and it is determined how far the order can be reduced without

significant degradation in performance. This is carried out in Chapter 6, and the results

of implementation in hardware are described in Chapter 7.

i The third and final objective is to combine the best modified LQG/PRE design

method with the optimal projection equations to determine the overall merit of the new

I robust, minimal order design. This work is carried out in Chapter 7.

I
I
I
I
I
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1. Motivation for This Study

The ideas developed in this work were motivated by the shortcomings of existing

32- and 3Go6-based techniques for rejecting disturbances in uncertain systems. In this

chapter, standards are defined for the practical merit of a controller, and two

approaches are proposed to better meet those standards than do existing methods.

Then the specific contributions of this work are outlined.

1.1 Criteria for the Merit of Candidate Designs

The standards that will be used to judge and compare the effectiveness of various

compensator designs are: 1) nominal disturbance rejection performance; 2) "efficiency"

of tradeoff between performance and stability robustness; 3) compensator order; and

4) ability to reject both steady state and transient disturbances. What follows is a

discussion of these criteria and the means by which they will be met.

A. Nominal Performance

The performance of a compensator will be measured by its ability to minimize I
the effect of unwanted exogenous signals on the prescribed controlled-variable vector,

whose elements consist of weighted linear combinations of system states and controls.

Nominal performance refers to the performance of a control system with all plant

parameters equal to their assumed values. Two competing classes of performance

optimality have been considered, LQG and X.&. These two definitions of optimality

differ in the way they model the exogenous signals and in the way they measure the

magnitude of the resulting disturbance in the controlled variables.

In the traditional LQG formulation of the disturbance rejection problem, optimal

performance is defined to be that which minimizes the cost functional

J T_ im- E{_J j'z(t)Qx(t) + uT(t)Ru(t)t (1.1) 1

in the presence of unit intensity, uncorrelated white process and sensor noise (v and n, 3
respectively). For the purpose of easier comparison with %oG-based methods, an

equivalent formulation will be made in the frequency domain. Define the noise vector,

w, and the controlled-variable vector, z, as follows:

4
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3 and denote the closed-loop transfer function matrix from w to z by H(s). Then the X2-

optimal compensator is that which minimizes the X norm of H(s) (i.e., IIH(s)16). The.

fact that the LQG and X2 definitions of optimal performance are equivalent are an

immediate consequence of the following theorem:

3 Theorem. J = 11 H(s) 162

Proof. Using the subscript "T", define time-truncated functions as follows:

SxT(t) 4(), - < t < T;
I Te0, ot erwise

-- Then

J =li_1 E 3JfT(t)Qz(t) + uT(t)Ru(t)]dt

I =llm~~ E{ffZT()Z dt }=liml E{ ZTT()zT(t)d }
, m~ ~ TTDo -o

-- =lim I E{ _f trac4wT(jw)H(j)H(jW)wT(jw)]dw

!__

[00j )T*(jW)]
-- trace [H(W) m{E T } H*(jw)J)dW

=r f trace [H*( jw)H(jw)]j dw

I

3 In the proof of the theorem, use was made of the definition of the X2 operator

norm (e.g., Dailey 1990), Parseval's Theorem, and the fact that the covariance of the

5
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assumed disturbance vector, w, is the identity matrix.

In 3G., controller design, the same closed-loop transfer function is considered, and

optimality of performance is achieved when its 3G. norm (i.e., J H(s)I) is minimized.

However, the disturbances, w, and the controlled variables, z, are viewed differently. I
The % operator norm is the induced L2 norm, meaning

I
H(s)L -  sup Z(t)jh (1.3)

1 vM 1

Therefore, w and z are considered to be L2 (i.e., square integrable) signals. This I
expression for the %, norm reveals a possible drawback to X&6-based control methods

for disturbance rejection. Since the 3G.o controller is designed for the worst case unity-

norm L2 disturbance, no consideration is given to the relative intensities of multiple

noise sources. The worst case disturbance may be one whose entire power is delivered

to a single process noise or sensor noise port. LQG-based methods, on the other hand, 3
model the noise intensity at each port separately.

Another expression for the Xi, norm is given by its definition,

IH(s)L -sup bjH(jw)] (1.4) 3
where B denotes the maximum singular value. This expression shows that the X.o-

optimal compensator is the one which minimizes the worst case disturbance rejection I
over all frequencies. In contrast, the LQG compensator provides better disturbance

rejection averaged over all frequencies. This principle is illustrated in the singular value

plot of a closed-loop vibrational system in Figure 1.1. Using the same state and control

weightings, Q and R, an LQG and an %,. compensator were designed to reject 3
disturbances in an eight-mode model of a flexible structure. The two curve indicate

the maximum singular value of the transfer function matrix, H(s), for the two different 3
compensator designs. The %. compensator provided slightly better worst case

performance, but at the cost of significantly worse performance averaged over the entire

frequency range.

Because of these two potential problems associated with disturbance rejection in

X.6-based designs (i.e., less precise noise modeling and less practical definition of

6I
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optimality) preferential consideration was given to improving LQG-based design

methods in the expectation that they would, by conventional measures, provide

significantly better nominal performance.

B. Performance/Stability Robustness Tradeoff U

For uncertain systems, :G.6-based methods, such as p-synthesis (Doyle 1985), 3
have the advantage that plant uncertainties with singular value bounds can be
incorporated directly into the design, without the need for fictitious noise sources to

model the uncertainties. However, these methods also have serious limitations, as

illustrated in their recent application to a flight control problem (Doyle, Lenz, and

Packard 1987). Firstly, X,,. controllers do not provide optimal performance and
stability robustness simultaneously. For example, an X. controller designed for
performance may yield very poor stability margins. Secondly, the p-synthesis technique 3
corrects this problem by attempting an optimal tradeoff between performance and
stability robustness, but the resulting controllers tend to be of very high order. 5
Therefore, ad hoc controller and/or model reduction schemes are required to reduce the
controller order to a practical size. 5

An LQG-based method can avoid these problems, provided that its noise models
adequately represent the uncertainties without greatly increasing the order of the
compensator. For this reason, the main thrust of this work is to improve on an existing

LQG-based robust control method by more accurately modeling the plant uncertainties

by means of more suitable fictitious noise sources. The purpose of doing so is to give I
the resulting compensators the same degree of stability robustness with a smaller

sacrifice in performance. The degree to which this occurs will be referred to as the 3
"efficiency" of the performance/stability robustness tradeoff.

Tahk and Speyer (1987) introduced a modified LQG synthesis procedure, later 3
called parameter robust LQG (PRLQG), in which perturbations in the elements of the

A-matrix are modeled by a fictitious internal feedback loop. Given a nominal system i

matrix, A, and the perturbed matrix, A, define the perturbation matrix by

AA = A - A. Then factor it as follows: AA = MLN, where M and N are of full rank 3
(to minimize their dimensions) and L is without loss of generality a diagonal matrix,
whose diagonal elements reflect the (unknown) magnitude of the perturbations. An

accurate model of the perturbed system results after the addition of this internal

8 , I



I
I

feedback loop, as shown in Figure 1.2. Now, given the nominal system,

i=Ax+Bu+Giw (1.5)

y =Cx + G 2w

5 the perturbed system is described by

I = Az + Bu + Gw + Mw. (1.6)

y = Cx + G2w

Za = Nz

Wa = Lza

3 where w. and z. are auxiliary input and output variables, respectively. Intuitively, one

may suspect that the robustness of the system to the prescribed parameter variationsg would be enhanced if wa were modeled as white noise, thereby adding 'MMT (for some
scalar p) to the process noise covariance. Actually, Tahk and Speyer showed that under

certain minimum phase and similarity conditions, the robustness of an LQ regulator is

recovered asymptotically as p-oo. Note that this robustness recovery technique is

identical to LQG/LTR for uncertainties at the input (Doyle and Stein 1981), provided3 M = B. However, the PRLQG method has the advantage that M contains partial

information as to the structure of the perturbation, AA. In fact, Tahk and Speyer

3] showed that LQG/LTR fails to asymptotically desensitize the estimator (when PRLQG

succeeds) for certain structures of AA, since B does not necessarily pass a crucial

similarity condition with respect to the matrix AA, namely that span{M} C span{B}

for some MLN-factorization of AA. Vibration control examples have demonstrated

that in such cases LQG/LTR may provide relatively poor robustness to parameterIuncertainties (Tahk and Speyer 1989). PRLQG also includes the dual of the above
procedure - analogous to LQG/LTR for uncertainties at the output. In the dual

procedure, z. is treated as an auxiliary controlled variable, and the term pNTN (for

some scalar p) is added to the state weighting matrix in the regulator design. ThisIprocedure also makes sense intuitively, as it seems reasonable to penalize the auxiliary

output variable in the cost functional in order to minimize the magnitude of the

auxiliary inputs that result. Combining the two procedures asymptotically yields

"absolute robustness" (i.e., stability robustness to parameter uncertainties of arbitrary

9U
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magnitude) as p, p -+ oo.

Lin (1989) studied the combined effect of both procedures in more detail and also

extended the method to include parameter variations in the B- and C-matrices in a way

that is less cumbersome than that suggested by Tahk and Speyer. This extended

method was termed LQG/PRE (standing for Linear Quadratic Gaussian design with

Parameter Robustness Enhancement). The resulting model of the plant, with

perturbations in A, B, and C is shown in Figure 1.3. The system equations are:I
= Ax + Bu + Glw + M.w. + MbWb (1.7)

y = Cx + G2w + Mcw,
Za =NaX, Zb = NbU, z, = Nx

Wwh Laza, Wb = Lbzb, wC = LzI where
AA MLNa, AB L - MbLbNb, AC A (1.8)

Given the nominal regulator weighting matrices, Q and R, and the nominal Kalman3filter noise covariances, Qf and Rt, this leads to the following modified LQG design

matrices (denoted with carats):

Q = Q +-P pN "rgW + pNCTNC (1.9)

R = R + PbNb TNb

=! = Q 1 + aMaMaT + PbMbMbT

R! = Rf + pcMCMCT

The main weakness of the LQG/PRE scheme seems to be the fact that it models

Ithe auxiliary input variables as white noise. In order to reflect reality, these fictitious

input signals should generally be modeled quite differently. For example, suppose there

is a single uncertain, but constant, parameter in A (i.e., wa is scalar, and AA is

constant). Then a true model of the perturbed system would require Wa to be

3 proportional to one of the states, say xi (through w. = LaNaX). Since the sign and

magnitude of the perturbation is unknown (i.e., La unknown), wa cannot be modeled

faithfully; however, intuitively, it seems its dynamics should more closely resemble the

dynamic behavior of xi rather than that of a constant-intensity white noise variable.

Considerable research has already been conducted that will be applied to

constructing a more meaningful model of the auxiliary inputs. This research was done

11I
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outside the LQG/PRE-framework, and did not include the related problem of penalizing

auxiliary outputs. Using stochastic differential equation theory, Wonham (1967, 1968)

developed modified Riccati equations for both LQ regulator and Kalman filter design for

systems with "state-dependent noise". State-dependent noise arises in systems with 3
state equations of the form

, = Ax + Bu + G(x)w (1.10)

where G(x) is some function of the state, and w is a (vector) white noise process. In the

above example, we would model w. as state-dependent noise, which would make it

white noise with time-varying intensity proportional to xi . Equivalently, one could I
conceptualize AA as a matrix whose elements are white noise processes.

Hyland (Hyland and Madiwale 1981, Hyland 1982), motivated by the maximum

entropy principle and the concept of AA as a matrix of white noise processes, modeled

uncertainties in the A-matrix by adding state-dependent noise to the plant model. In 3
doing so, he developed the equations for the full LQG compensator for systems with

state-dependent noise. For such systems, the separation principle no longer holds. The I
regulator and filter design require the solution not of two uncoupled Riccati equations,

but of four coupled equations - two modified Riccati equations and two modified U
Lyapunov equations. Later, Bernstein and Hyland (1988a) extended this result to apply

to systems with state-, control-, and measurement-dependent noise, effectively allowing

parameter perturbations in all three system matrices (AA, AB, and AC, respectively)

to be modeled as white noise processes. The design process is computationally more

difficult than that of simple LQG in that it requires the iterative solution of four 3
coupled matrix equations, but notably the optimal compensator is of the same order as

the plant. That is, adding state-, control-, and measurement-dependent noise 3
(henceforth referred to collectively as multiplicative white noise) to a system involves no

increase in compensator order. i

As stated at the beginning of this section, this research involves modeling

fictitious noise sources more accurately in an LQG-type problem. Specifically, the

LQG/PRE approach will be adopted, with modifications that are intended to improve

the efficiency of the performance/stability robustness tradeoff by remodeling the

auxiliary input signals such that they more closely reflect reality. Two different

fictitious noise models will be investigated, one motivated by consideration of the time-
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I
domain knowledge of the auxiliary input signals, and the other by frequency-domain

I_ knowledge.

The time-domain method consists of using multiplicative white noise in place ofI simple white noise to model the auxiliary input signals. Recalling the simple example

mentioned above, the motivation for this approach is illustrated in Figure 1.4. These
I plots were derived from a two-mode simulation of the rectangular plate apparatus

described in section 1.3. A true constant parameter uncertainty in the A-matrix would3 be compensated for optimally if w. were modeled perfectly (i.e., w. = kx,, where the

constant k is determined by the sign and magnitude of the parameter variation), as
shown in Figure 1.4a. However, since k is unknown, this model is impossible to

implement. The LQG/PRE method uses constant-intensity white noise to model w.
(say, wa = w), as in Figure 1.4b. But the multiplicative white noise approach will use

state-dependent noise to take advantage of the fluctuations in xi (i.e., wa = w), as

shown in Figure 1.4c. Presumably, the extent to which this noise model improves the

LQG/PRE design will depend on the degree to which the amplitude of xi varies over
time. In particular, the multiplicative noise model should provide a greater

improvement for transient noise rejection than for steady-state (i.e., constant-intensity)
noise rejection. This modification of LQG/PRE requires solution of the coupled Riccati
and Lyapunov equations, but does not result in an increase in compensator order.

The frequency-domain method involves an attempt to match the true auxiliary
inputs in the frequency domain. Time-domain matching suffers from the fact that the

sign of the parameter perturbations is unknown. As a result, a very broad band signal
is used in an attempt to cover both possibilities at every time instant. However, our

knowledge of the frequency content of the auxiliary inputs is limited only by our

knowledge of the disturbance's frequency content and of the closed-loop system

dynamics. So, given an assumed disturbance model, the true auxiliary inputs can be

modeled fairly accurately in the frequency domain by closing the loop with an LQG
compensator which gives the desired nominal performance and measuring the frequency

response of w., wb, and wc (see Figure 1.3). Therefore, the frequency-domain behavior

of the auxiliary inputs will be approximated by passing fictitious white noise signals

through suitable frequency-shaping filters. The effect is demonstrated in the frequency
spectrum plots of Figure 1.5, generated from the same data used in Figure 1.4. The

frequency-shaped noise model, produced by means of a second-order filter, provides a

much better frequency-domain replica of the true signal (w. = kzi) than does a white

I 13
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noise model (w. = w). As with time-domain matching, the correct magnitude of the

auxiliary inputs cannot be duplicated, but the intensity of the noise signals used to

generate the noise models may be adjusted as design parameters. This modification of

LQG/PRE does not require solution of the coupled Riccati and Lyapunov equations; 3
however, it effectively increases the size of a full-order compensator, since it involves

augmentation of the plant model with additional dynamics. 3
C. Compensator Order

Many methods are available to reduce compensator order, but they fall into

three basic categories - model reduction, controller reduction, and direct design

(Anderson and Liu 1989). Model and controller reduction may be accomplished by such I
methods as balanced truncation (Moore 1981) or Hankel norm approximation (Glover

1984), but the optimality of the compensator (for a given controller order) - and 3
sometimes even stability - is preserved only by designing a reduced-order controller

directly from a full-order plant model. The equations for the direct design of LQG f
reduced-order controllers were developed by Kwakernaak and Sivan (1972, sec. 5.7),

among others. However, the solution of these equations requires a gradient search on

the many free parameters of the controller state-space model. A far more practical

method was developed by Hyland and Bernstein (1984), involving solution of the

optimal projection equations - a coupled system of two modified Riccati and two

modified Lyapunov equations, similar to those mentioned above in the discussion on

stochastic control with multiplicative white noise. The Lyapunov-type equations are 3
analogous to the Lyapunov equations required in solving the balanced truncation of the

plant or controller, but they are coupled with the modified Riccati equations by means 5
of an optimal projection matrix when the controller is less than full-order. This

coupling demonstrates the fact that balancing and controller design cannot be

performed separately to obtain an optimal reduced-order controller.

The suggested modifications to LQG/PRE easily fit into the framework of

optimal reduced-order compensators, with minor modifications to the optimal projection

equations. This is an important feature, since the degree to which controller reduction

is possible may very well determine whether modern control applied to flexible

structures can be implemented.

16
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3D. Steady State, Transient Disturbance Rejection

When sensors are available to measure incoming disturbances, feedforwaxd
control becomes an alternative to feedback control. The main advantage of feedforward

control is that the compensator does not need to, in effect, model the plant dynamics.
Therefore, feedforward control appears to be an attractive alternative when small

compensator order is important. However, experience has shown that the advantage in
compensator order can be significantly reduced if the feedback controller is designed by
optimal projection. Also, feedback controllers can provide added damping to the plant
and therefore provide the ability to reject transient disturbances. For these reasons,

only feedback control techniques are studied here.

1 1.2 Contributions

This research has a number of contributions. Firstly, the internal feedback loop
(IFL) modeling principle of Tahk and Speyer is generalized and fully exploited to
maximize its potential. Secondly, the concept of multiplicative white noise is given
broader application by means of a new interpretation, and a complete derivation is
given of the controller design equations from first principles. Thirdly, implementation3 concerns are thoroughly discussed, and explicit algorithms are developed that have

application beyond this study. Lastly, the validity of the controller design techniques is1 demonstrated by their implementation on flexible structure hardware.

The original IFL modeling technique, used by Tahk and Speyer for PRLQG and
by Lin for LQG/PRE, was restricted to a white noise model for the auxiliary inputs and

resulted only in full-order controllers. In this research, it is shown that a reliance on
white noise models may result in relatively poor performance. Frequency-shaped noise
and multiplicative white noise models are developed to improve the flexibility of this
LQG-based design method. Also, optimal order reduction is incorporated into this3 framework for the first time. The tremendous savings in controller duty cycle that

result are demonstrated, suggesting that the addition of this feature may be critical to3 the ability of these parameter-robust controllers to be implemented.

The controller design equations for plant models with multiplicative white noise

II have already been derived for application to a less general and differently motivated

robustness problem. However, derivations published up to now have been incomplete,

I
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frequently presuming knowledge of stochastic differential equations and omitting

nontrivial steps and clarifications which fully explain the applicability of the design

equations. This work attempts to fill that void by supplying an entire and unbroken

derivation, complete with surrounding discussion and explicit references to readily 5
available sources.

In the implementation phase of the design, a number of decisions must be made 5
which affect the performance of the control system. The procedures that were used to

resolve these problems are discussed in detail, and explicit algorithms are developed for 3
the solution of the coupled Riccati and Lyapunov equations of Chapters 3 and 4.

The application of the parameter-robust and reduced-order controller designs to 5
the control of an actual flexible structure demonstrate their ability to solve real

problems and allow us to quantify the performance of these designs. Sacrifices in

performance due to robustness enhancement and controller reduction are measured and

limitations are discovered as to the maximum amount of controller reduction possible.

I
I
I
I
I
I
U
I
I
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*2. Frequency-Shaped Noise

2.1 Problem Statement

The frequency-domain method of auxiliary input modeling attempts to replicate

the frequency-domain behavior of the (unknown) auxiliary input signals by means of a

frequency-shaped noise model. Rather than using white noise (as does LQG/PRE) to

model the auxiliary input signals w., Wb, and wc (see Figure 1.3), a much more preciseIdetermination is made of the actual power spectral density of these signals. The

resulting auxiliary noise model is then combined with a cost functional penalty on the

auxiliary output signals - z., Zb, and zC - to form a new method of parameter-robust

controller design. The noise modeling phase of this design method consists of 1) finding

an approximation for the power spectra of the auxiliary input signals, 2) designing a

noise shaping filter to warp the power spectrum of white noise into this shape, and 3)

appending the shaping filter dynamics to the plant.

Referring to the LQG/PRE model of the plant in equations (1.7) and Figure 1.3,
we see that the actual power spectra of the auxiliary inputs cannot be found, because

these signals are a function of the unknown diagonal matrices L., Lb, and Lc, and of the
compensator matrix triple, (AC,BC,CC}, which is yet to be designed. However, a very

good approximation to the power spectra may still be found. For relatively small

perturbations in the A-, B-, and C-matrices of the plant, compared to the nominal3 values, the feedback and feedforward loops containing the auxiliary signals have little

effect on the frequency content of the states and controls, upon which the auxiliary

inputs depend. Therefore, we may safely break these loops at the auxiliary inputs (see

Figure 2.1) for the purpose of approximating the power spectra. Now, the unknown

diagonal L-matrices only determine the sign and magnitude of the auxiliary inputs, not

their frequency content, and the elements of the vectors w., Wb, and wC are proportional
to those of za, zb, and zc, respectively. Therefore, the task of finding the power spectral3 densities of the auxiliary input signals is equivalent to finding the power spectra of the

auxiliary outputs, modulo some proportionality constants. The values of thoseIconstants are not important, because the relative noise intensities of the auxiliary inputs

must later be adjusted in order to provide the desired amount parameter robustness.

The problem of not knowing the compensator matrices a priori can be treated by

designing a standard LQG compensator based on the nominal parameter values of the
plant and using it to calculate power spectra. Experience has shown that the LQG

19i
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compensator can provide an excellent substitute for this purpose. If greater accuracy

were required, one could use an iterative process of alternately designing a compensator

and approximating power spectra until a satisfactory noise model were found.U
2.2 Noise Shaping Filter Design

Figure 2.1 illustrates the resulting model used to obtain approximations of the

power spectral densities of the auxiliary input signals. The corresponding state-space

model of the n-th order plant, n-th order compensator, and auxiliary inputs (assuming

3the L-matrices are all identity matrices) is given by

*(t) = Ax(t) + Bu(t) + Gjw(t) (2.1)

y(t) = Cx(t) + G2w(t) (2.2)

3 z,(t) = Azxjt) + Bcy(t) (2.3)

Su(t) = CCC(i) (2.4)

w.(t) = N.x(t), wb(t) = Nbu(t), wc(t) = Ncx(t) (2.5)

It is assumed without loss of generality that the exogenous noise signal, w(t), is a vector3 of mutually independent, unit intensity white noise processes. Included in w(t) are both

the process noise and sensor noise. The closed-loop system with input w and outputs

i Wa, Wb, and w, is described by

" (t) = A', (t) + Gw(t) (2.6)

I w =(t)[N. O] (t) (2.7)

3 wb(t) = [0 NbCc] ' (t) (2.8)

wcr)=N O- (t) (2.9)

5 where

L (t[7(t) BC ACI - B2] (2.10)

1 21
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From this closed-loop model and the assumptions on to, the power spectral

densities of the elements of w, Wb, and wC may be derived one at a time. Let us say, 5
arbitrarily, that we are interested in w. and that it is a scalar. The following procedure

is easily repeated for all other existing auxiliary inputs. Then we have the frequency- 5
domain description of w.,

w0 -[N. O(sI - A) -G w (2.11) 1
Hs)w I

In general, then, H(s) is a 2n-th order, multi-input, single-output transfer function 5
matrix. If the plant is of sufficiently low order, we could stop here and use H(s) as the

noise shaping filter to be appended to the plant. Normally, however, this would not be 3
practical, so a lower-order filter will be found, which is single-input, single-output. One

might suspect that a low-order balanced truncation approximation to H(s) would

provide a good substitute, but examination of their comparative frequency responses for

particular examples has shown that there is a much more effective method of designing I
an accurate noise shaping filter.

First we find an expression for the power spectral density, S%, a(w), of w,. For

a vector exogenous noise process w, the definition of H(s) in (2.11) leads to I
(Maciejowski 1989, p. 98):

Sa(w) = H(w)Sww(w)H(w) (2.13)

= H(w)H*(w)

where H*(w) is the complex conjugate transpose of the transfer function matrix from w i
to w.. A suitable shaping filter designed to yield this power spectrum may be found by

deriving its magnitude frequency response from the information in (2.13) and curve

fitting a transfer function to give that response. The desired frequency response of our

shaping filter transfer function, Hf(w), is 5
IHsw)I = ,H(w)H*(w) (2.14) 3

22



I
I

In order to hold down the controller order, the magnitude response in (2.14) should be

I fit using a shaping filter of as low order as possible.

I
2.3 Controller Design Summary

3 Once the shaping filters to produce auxiliary inputs w., Wb, and w, have been

found - say, Ho(w), Hb(W), and H(w), respectively - they may be appended to the3 plant, as shown in Figure 2.2. Define the state-space models of the shaping filters by

the following identities,

H.(w) = C..(jwI AA.) -B.B + D+ (2.15)

I Hb(W) = C,,(jwI - Ab)- 'Bwb + Dwb

3 Hc(w) = Cw.(jwI - A,.) -'B,. + DC

3 Then the state-space model of the plant, (2.1) and (2.2), is augmented so that we have,

x A MoCa MbCwb 0 x B G1 MoDwa MbDwb 0 w

d xa 0 Aao 0 0 XZ 0 0 B,,. 0 0 Va

1b 0 0 0 Aw b  0 b  0 0 Bwb 0 Vb

c L 0 0 A 0 J b 0 0 0 Bwc vC

Sx w-

MC wc]['-+Du+[ G 2  0 0 McDwc]ay= C 0 C,,Xb Vb

1 
... 

(2.16)

5 The supplementary independent white noise variables va, vb, and vc are treated as
exogenous noise sources, and there are as many of these additional noise sources in the3 augmented model as there are independent parameter uncertainties in the plant.
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After augmenting the plant with the noise shaping filter dynamics as above, the

rest of the frequency-domain method is the same as LQG/PRE. The intensities of the

auxiliary inputs and the weights on the auxiliary outputs are adjusted to provide the

desired amount of parameter robustness. Then a standard LQG compensator is 3
designed based on the augmented model with modified noise intensities and cost

functional.

I
i
I
I
i
I

I
I
I
i

I
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3. Multiplicative White Noise

3.1 Problem Statement

NThe time-domain method of auxiliary input modeling uses artificial noise of

time-varying intensity to account for the time-varying amplitude of the actual auxiliary

input signals. Since the amplitude of the true signals is proportional to a known linear

combination of the states or controls, a multiplicative white noise model provides the3 desired proportionate noise intensity as a function of time. As in Chapter 2, the

auxiliary input model is supplemented with a cost functional penalty on the auxiliary

outputs. The time-domain method without the added flexibility of auxiliary output

penalties is equivalent to the compensator design method of Bernstein and Hyland (e.g.,
1988a) for multiplicative white noise for uncertain systems, although the motivation

here is different. Since the optimal linear quadratic compensator for the resulting plant

model cannot be found by standard LQG techniques, a more lengthy development is

required here than was necessary for the frequency-domain method of Chapter 2.

Modeling of the auxiliary input signals by multiplicative white noise requires

modification of the state and/or output equations of the plant. For the general case of

uncertainties in the A-, B-, and C-matrices, we have the n-th order system,I
dxt = Axdt + -yAjxtdvjt + Butdt + E -. Butdvjt + Gldf3t (3.1)

i=1 i=1

dyt = Cxtdt + +yjCjxtdvjt + G2dt (3.2)
s=1

These equations are written in differential form, because the development of the

LQ optimal compensator for systems with multiplicative white noise requires the use ofIa more rigorous form of stochastic differential equation theory. The theory makes

subtle distinctions in the interpretation of noise processes, which will be reviewed briefly

in the next section. Such precise definitions are inconsistent with the use of the concept

of Gaussian white noise, which, strictly speaking, is not well defined in the more

i rigorous framework. Therefore, all of the noise variables in this chapter will be written

as differentials of Wiener processes, also known as Brownian motion processes and

loosely referred to as the "integral of Gaussian white noise". Note also that variables

which are a function of time are identified as such by a "t" in the subscript. This

I
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compact notation is used throughout the chapter in order to prevent the equations from

becoming too cumbersome. I
The model of equations (3.1) and (3.2) represents a system with p independent

auxiliary input signals, arising from p independent parameter uncertainties. The vit

(i = 1,2,..., p) are scalar independent Wiener processes, with E{dvit2} = -yidt, and (I, is a

vector Wiener process with E{d#tdftT } = Vdt. As an illustrative example, consider the 3
following I-mode damped oscillator with acceleration output and two independent

auxiliary input signals. 3
dx [ 0 2 1 o ol [o[OltdV + 0 0 (3

SW - 2(w rd +1 0 b tdu Lbf +6 2 ft 1 0 .V

dyt =I -w 2 - 2Cw tdt +  0 b 1 tdvlt +  0 1 t (3.4)

An uncertainty in the damping parameter, -2(w, must occur in both the A- and C- 3
matrices. Since these parameter uncertainties are necessarily the same, they comprise a

single independent uncertainty and utilize the same noise process, dv1 t. The resulting

auxiliary inputs consist of (1) state-dependent noise (noise with intensity proportional to

the states and entering at the process noise port) and (2) measurement-dependent noise

(noise with intensity proportional to the states and entering at the sensor noise port).

An uncertainty in the B-matrix will generally be independent of the damping parameter

uncertainty and is provided for by an independent noise process, V2t, yielding an 3
auxiliary input which is control-dependent noise (noise with intensity proportional to

the input and entering at the process noise port). The positive scalar constants 61 and I
62 are design parameters which effectively adjust the intensities of the auxiliary input

noise signals accoraing to the magnitude of the uncertainties present. 5
Given the nc-th order state-space model of the compensator,

dxct = ACx~tdt + BCdyt (3.5)

ut = CCzCt (3.6) 3

where nc = n for a full-order controller, we can represent the closed-loop system as

follows.
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d- t = Ax ,dt + Aix ,dvi, + Gd/I, (3.7a)
i=1t

= d i ... OL jI
In equation (3.7) we have defined the vector Wiener process

dv, A- [dv,, dV2, ... dv,,]"  (3.8)

I
A B C- Ai BitB C A c A' B cC i  0( 3 9

Now the compensator design objective may be stated in terms of an LQ

optimization problem. Define the standard cost functional,

J(A, B¢, Cc) 4- lim T {[xT R1 xt + 2xTR1 u, + uTR u,] dt} (3.10)

In order to simplify the problem, the cost functional will be rewritten in an equivalent3form without the integral,

I J(AcB, C) = imE{JXTRix, + 2xTRIu, + uTR2u, dt} (3.11)

[Kwakernaak and Sivan 1972, p. 394, Theorem 5.4]. In fact, the limit may be
eliminated as well, due to the assumed stationarity of the exogenous noise processes,

provided the initial time is infinitely far in the past (i.e., for to-# - oo).

In light of the performance objective (3.11), the LQ optimal compensator design

problem for systems with multiplicative white noise may be stated as follows. Given aI plant (1.1)-(1.2) with p independent auxiliary inputs, find a matrix triple, {A,,BcCc},
to realize a compensator (3.5)-(3.6) which minimizes the cost functional (3.11).
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3.2 Preliminares of Stochastic Differential Equation Theory

Before deriving the necessary conditions for the optimization problem just 1

stated, a brief overview will be given of those elements of stochastic differential

equation theory which will be used in the derivation. For more information on matters I
where specific references are not given, see Jazwinski (1970) and references therein.

Consider the stochastic differential equation, I

dx, = f(x;, t)dt + G(x,, t)dflt , t > to (3.12) 1
where #h is a vector Wiener process with E{d#3,d/tT } = Q(t)dt. Associated with this l

equation is the integral equation,

=t- Xo = f f(x,r)dr+ f G(x,,,r)dg,, (3.13)to to

The first integral in (3.13) can be defined as a Riemann integral for sample functions of l

x, or as a mean square Riemann integral (Jazwinski 1970, p. 66) for z a stochastic

process. If G were a function of time only, as would be the case for ordinary state 3
equations with additive white noise, the second integral would be known as a Wiener

integral However, added complications arise when multiplicative white noise is present

(G a function of x). In this more general case, the second integral may also be defined

in a mean square sense, but such a definition will not be unique. Ito- (1944) was the

first to define this type of stochastic integral. In doing so he modeled the Riemann sum

after a forward difference equation, effectively sampling the integrand at the beginning

of each partition, and then proceeded with a mean square limit to define the integral. I
When the integral is interpreted in this sense, it is called an Ito stochastic integral, and

the associated differential equation (3.12) is called an Ito stochastic differential equation, I
or It-3 equation. The rules of calculus which result from this interpretation are called

Ito- stochastic calculus. Note that the closed-loop state equation, (3.7), can be

interpreted as an It6 equation.

What is not immediately apparent is that the second integral in (3.13) has

different interpretations according to where the partitions of the Riemann st 'n are

sampled. For example, another important interpretation, called the Stratonovich

stochastic integral (Stratonovich 1966), arises when the differential equation is modeled
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as a central difference equation before taking the limit (i.e., partitions sampled in the

center). Actually, the differences between the It6 and Stratonovich stochastic integrals

are somewhat more profound than that, but the mathematical details which distinguish3 the two are beyond the scope of this work. The purpose of the foregoing discussion is to

inform the reader that the stochastic differential equation (3.12) which appears in state-

I space models with multiplicative white noise has no meaning without assigning the

associated integrals a particular interpretation (e.g., It6 or Stratonovich integrals).

I The It6 stochastic integral is defined over a much broader class of functions than

the Stratonovich integral and is used for most theoretical work in stability and control.

Therefore, It6 stochastic calculus will be applied in the development of the next section.

The Stratonovich integral does have a number of nice properties, but a simple

transformation exists between differential equations of the two different interpretations

(Jazwinski 1970, pp. 118-20, 131). It is not clear which interpretation is more "correct"

for the application studied in this work. However, Wong and Zakai (1965) discovered aI property of the Stratonovich noise model that gives it intuitive appeal for applications

to physical systems:

I Theorem 3.1: Let xt be the solution to the stochastic differential equation (3.12). Now,

replace the Wiener process P, with a sequence of continuous piecewise linear

approximations, fl (n), such that P,3 (n) converges to Pt as n-ooo. Then the solutions,
t(n) , to the resulting sequence of ordinary differential equations converge to xt if Ot

I in (3.12) is interpreted in the Stratonovich sense. This property does not hold in

general for Pt interpreted in the ItS sense.I
Because of Theorem 3.1 and the fact that Bernstein (e.g., 1987, Bernstein and Hyland

1988b) argues in favor of the Stratonovich interpretation for applications to lightly

damped flexible structures, a comparison will be made in Chapter 6 of the performance

of the two different controllers that result from the two stochastic integral

interpretations when applied to a particular example.

An important result of It6 stochastic calculus, called It-''s integration formula,

will be used in the next section. It is derived directly from It-''s Theorem below.

I Theorem 3.2 (It-'s Theorem or It-o's Chain Rule) (e.g., Jazwinski 1970, p. 112, Lemma

4.2) Also, for a more formal proof, see Gikhman and Skorokhod (1969, pp. 387-91):
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Let 4,(x,, t) be a real, scalar linear functional with continuous partial derivatives,

4,00 A49 ,ot Tt 0. - TX oZA _5'X (3.14) I

where xt is the unique solution to the vector It6 stochastic differential equation,

(3.12), and Pt is a vector Wiener process with E{d#d#T} = Q(t)dt. Then the

stochastic differential do of 4' is

do = Ogdt + O.Tdx; + trace{GQGT 4 }dt (3.15) 1
The existence of the third term in (3.15) establishes the fact that the usual chain rule 3
does not hold in It6 stochastic calculus, although it does hold, incidentally, in

Stratonovich stochastic calculus. 3
Integrating (3.15) and taking the expected value conditioned on xto = z0, Its's

integration formula results (Wonham 1970, p. 137): 5
E{,(zx,t) I xto =.To)

-
4 (Xo, to) + E{ I{[* + ekzTf + l trace{GQGT4,z}] dT I xo = xo} (3.16) g

The arguments, (x,, r), have been omitted for functions in the integrand in order to

conserve space. The term in (3.15) involving df3g (by way of dz,) does not appear in 5
(3.16) due to the Martingale property of a stochastic integral w.r.t. a Wiener process.

With this formula, we are now ready to find an expression for Qt. 3

3.3 Conversion to Deterministic Minimization Problem I
The first step in deriving the necessary conditions will be to simplify the

optimization problem stated at the end of section 3.1 by converting it into a 1
deterministic minimization problem. Define the closed-loop state covariance,

Qt _E{ , } X Q = limQt (3.17) I
and the closed-loop state weighting matrix,
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R c [CJTR1 2
T  ccTR2 C (3.19)

5 Then the cost functional of (3.11) becomes,

3 J(A,,B.,C ) = limE-"x tTRt} (3.19a)

I = trace{Q R} (3.19b)

The objective then is to minimize the cost as described by (3.19b). The quantity A is
known, because it is specified by the cost criterion in the problem statement. It

remains, however, to find an expression for the closed-loop state covariance, Q.

Define the functional, Oij( ) = - ti ti,, where ' ti denotes the jth element of the
solution vector X t to the closed-loop state equation (3.7). Note that
Q (i,,j) = E{tij('(t)}. The f, G, and Q quantities of (3.7) as defined by the generic It6
equation, (3.12), are given by,

MYt f A ' t G('X ) =[A~ I~ x t ..P

I Q = diag{- 1,, 72,.. I, V} (3.20)

The partial derivatives needed for It&'s integration formula are computed as follows.

IO = 0, (3.21)

II (i) (j)

i (i)

X "(Eii + Eii) (3.22b)

- where Ei, denotes the elementary matrix with - in the (i, j)th position and O's elsewhere.
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I0oo ... ... ,,(i) (j)

Wi : *.. 1 i

F .01(3) "1".

Li (3.23a)

0 ...... 0Lo 0 ... ...0(i) •2 •I~

I
= (Ej, + Ej,) (3.23b)

Therefo-c, the second and third terms of the integrand of It6's integration formula are I

Ax Tf , Ax ),, + ( (I t ),U

T-~ T), + (-4 - t-3T,

= T~T) + (Ax x (3.24)

andxG] 

d a1 Y 72 .. 7 ,Vtrace{GQG T~l} = trace[Ait A4z ... t A] tciag{y,, 2, ... ,,

A ,,, A42x, .. A, , GI (Ei + Ejj)}

=traCe{[, I 'AO t- + G G (Ei1 + EJ

= 1 2 xk k Ah Ti ) (3.25)I

where V -G GVT. In the last step of (3.25), the identity I
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trace(An x .Bm x n= AA1  (3.26)

was used, along with the symmetry of the expression enclosed in brackets.

I Now we may apply It's integration formula to find an expression for the closed-

loop state covariance, Qt.

E{ "j-Xj 0 = o} = aitoj + E{l[( Xt =A), + T).I to

- P- T T)i + (r A) ij ]dr I X t - O} (3.27)

k=1 t

Ut
Q(i,j) = Q0 (i,j)+f (VAT)I, + (AQ,)ij

0 to
P ("TkAkQ,-Ak T)i + ("),iJ]dT (3.28)0 k= 1

-- pr T .'i

Qt = Q o.+ ![Q,+ A A = AQA .j dT (3.29)

toi=

I By the Fundamental Theorem of Integral Calculus,

Qt = ~ Q (3.30).
i=1

.3 The cost functional, (3.19b), requires the steady state solution to (3.30), but first

we must determine under what conditions such a solution exists. To that end, we will

5 consider an alternate expression for Qt which is useful for examining the stochastic

stability of the system. The following lemma will be used repeatedly.

3 Lemma 3.1: Given matrices A, B, and C of compatible dimensions,

vec(ABC) = (CT A)vec(B) (3.31)

I Proof: See Graham (1981, p. 25, Property VIII).

3 In Lemma 3.1, the "vec" operator merely organizes the columns of its matrix argument

into a single column vector with the first column on top and each subsequent column
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beneath the previous one. The symbol "®" represents the Kronecker product. Now

define I
-4-A AeA + -yjAjoAj (3.32)

where "e" is the Kronecker sum. Then taking the "vec" operation of (3.30) and

applying Lemma 3.1 to the first three terms on the right hand side, we obtain the

alternate expression,

vec(Q j) = A vec(Q t) + vec( V) (3.33)

From this equation we see that when A is a stable matrix, a steady state I
solution, Q, exists. Under this condition (i.e., stable A) the closed-loop system (3.7) is

said to be second-moment stable (Arnold 1974), and Q is the solution to the algebraic 3
equation,

0=AQ +QAA + ,AQA, V (3.34)

which is a modified Lyapunov equation. Note that when the plant uncertainties are I
zero (i.e., -yj = 0 or Ai = 0, for all i = 1,...,p) the third term in (3.34) vanishes and the

standard Lyapunov equation results for the steady-state second-moment matrix of the U
state vector for a system driven by white noise [see e.g., Kwakernaak and Sivan (1972,

p.101, Theorem 1.52)]. In order to assure that the cost functional, J, is finite and 3
independent of the system initial values, only second-moment stabilizing compensators

will be admissible. I
Therefore the original stochastic optimization problem has been reduced to the

following deterministic one: 3
minimize: trace(QR) (3.35) 1

over the set: {(At, Be, C): .4 is stable}

0 -- +_T+P -iii+

subject to: 0= AQ + QAT +, A yQAT+ V
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1 3.4 Derivation of the First-Order Necessary Conditions

The first-order necessary conditions that a controller triple, {Ac, Be, Co}, must

meet to solve this type of problem have been derived by at least two different methods

the Lagrange multiplier method (Bernstein and Haddad, 1989), used to solve an X.3 problem, and the calculus of variations method (Bernstein and Hyland, 1988a). The
Lagrange multiplier solution is somewhat easier to follow but could not be found in5 complete form in the literature for this particular problem. Therefore, the bulk of it

will be derived here, leading up to the simple but more tedious algebraic manipulations,3 which will be referenced to a paper where they are found in their entirety.

The Lagrangian corresponding to the optimization problem (3.35), can be written

as,

L(Ac, Bc,Cc, Q I I IA) =: tr{Q +, [AQA +Q QA + + VI]P} (3.36)
i=1

I where P is an 'n x R matrix of Lagrange multipliers and A is the scalar supplementary
Lagrange multiplier, which is without loss of generality equal to 1 if the problem is

I normal (i.e., A = 0 =: P = 0) - see, for example, Ewing (1985, sec. 5.5). Since the
conventional Lagrange multiplier problem involves a vector of constraints and hence a3 vector of Lagrange multipliers, the use of a Lagrange multiplier matrix requires some

justification. The conventional problem with equality constraints takes the form,

I minimize: f(x, y) (3.37)

I subject to: g(x) = 0

where f is a scalar function of the vector variables x and y, and g is a vector function of

3 x. Then the Lagrangian to be minimized becomes,

5(x,y,p,A) = Af + p Tg (3.38)

with p a column vector of Lagrange multipliers with dimensions equal to those of x.

The matrix equality constraint in '(3.35) may be rewritten in the form (3.38) by
applying the "vec" operator to the equation. Define the matrix expression on the right3 hand side of the equality constraint in (3.35) as X. Then an equivalent to the

constraint X = 0 is vec(X) = 0, which yields the Lagrangian,
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.(ABC,Q, p,\) " A tr{ } + pTvec(X) (3.39) g
where p represents-.an n 2 x 1 Lagrange multiplier vector. Of course, (3.39) is equivalent

to (3.36). Applying the identity, (vecAT) T vec(B) = tr(AB) (Graham 1981, p. 18, 3
Example 1.4), to the term involving p, we see that (3.39) may be written as

.(AC,B,CC, QP,A) A tr{QR} + tr{PTX} (3.40)

where the - x n- Lagrange multiplier matrix P is defined by p = vec(P). Clearly, (3.40) 1
is equivalent to (3.36). Note that the symmetry of the expression defined as X means

that we may assume without loss of generality that P is symmetric. I
In taking the partial derivatives of the Lagrangian, the following properties will

be used (Graham 1981, pp. 76-78, Examples 5.4-5.6),

Otr(AX) = AT, 8tr(AX T ) = A, atr(XT = AXB + TXB T  (3.41)

Taking the partial derivatives of the Lagrangian, (3.36), with respect to each of its 3
arguments and setting each equal to zero:

wj Q II
=0 =1

aQ

In order to test whether the optimization problem is normal, we set A = 0 in (3.42). 1
Taking the "vec" operation of the equation, as well, the result is

( T T+ --  AT(iTIvecP =0 (3.43) 1
AT vecP =0 1

Since A is stable by assumption, AT has no nullspace, and therefore ' = 0. As 3
stated above, A = O= P = 0 means that the problem is normal, and we can take

A = 1, without loss of generality. Therefore, with A = 1, 3
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Before proceeding, partition the symmetric matrices, V, Q, and P, into 2 x2

blocks (of dimensions n x n, n x no, n. x n, and nc x nc):

r , ,1B A4 Q1  Q12  *.1 P1  P12 1
- B_ V12 T  BCV 2B T Q12 Q2  p- 12 T P 2  (3.45)

INow the Lagrangian may be expanded:

I(Ac, B, C, QP) = tr{Q 1 R1 + Q12CcTRc2T + Q12TR12Cc + Q2C TR 2 Cc (3.46)

+ (AQ 1 + BCcQ12T)Pl + (AQ 12 + BCcQ2)PI 2T

+ (BcCQ, + AcQ12T)P 12 + (BcCQ12 + AcQ 2)P2

1 + (QIAT + Q12CCTBT)pI + (QlCTBCT + Q12AcT)P 12 T

+ (Q 12TAT + Q2CcTBT)P12 + (Q12 TCTBCT + Q2AcT)P 2

+ -yi[(AiQ 1A T + BiCcQ12TAT + AiQi 2CTBT

i = 1 + BICcQ 2CCTBT)p
1

+ (AQCTBcT + BiCcQ12TCTBCT)P12T3 + (BcCiQ1 A T + BcCiQi 2CCTBT)P 12

+ (B.CQlCTBcT)P 2 ]

I + VIP 1 + V 12BcTp 12T + BcV12TP12 + BcV 2BcTP 2}

I This allows us to take the partial derivatives of the Lagrangian with respect to the

compensator parameters.I

I P 12TQ12 + P2Q2 + P1 2TQ1 2 + P2Q2  0 (3.47)

P 12 TQ12 +PA2= 0 (3.48)
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~J ~- 0:

P12TQJCT + P 2QI2TCT + PI 2TQICT + P 2QI2TCT (3.49)

+ ",(P 1 2 TAQC T + P 1 2TB cQ 1 2 TCT + P 12 TA Q 1CT

+ P2 TBCcQ12TCT + 2P 2BCjQjCj) 3
+ P12TV12 + P12TV12 + 2P 2BV 2 = 0

(P12TQJ + P2QI2 T)CT + P2TV 12 + P2BCV 2  (3.50) 1
+ E -i(P12T AQ + P12TBCQT + P2B.CCQI)CIT =0

i=1

If for each i, Bi and Ci are not both nonzero (i.e., the Wiener processes used for i
control and measurement dependent noise are independent), a closed form

expression for B, can be found. For then we have,

(P 1 2TQ1 + P2QI2T)CT + P12TV12 + P 2BcV 2  (3.51)

+.E yI(P 12TAQj + P2BCCQi.)C T =0 1
I =1

which leads to,

c= -P 2 - 1[(PTQ + PQT)CT + PT(V + y,A,QiCT)]V 2 -1 (3.52) 1

where 3
f7_ V2 +=2 i" CQJC,T (3.53) p
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RI 2TQI 2 + R 12 TQ1 2 + 2R 2CcQ 2  (3.54)

+ BTpQ12 + BTp12 Q2 + BTP 1 Q1 2 + BTP 2Q2

"+ , - i(B TPIAiQi2 + BITp 1 ARQ1 2 + 2B TPBiCcQ2

+ + BITP12BcCiQI2 + BiTp12BcCiQI2) = 0

R12TQ12 + R 2CcQ2 + BT(P1 Q12 + P1 2Q2) (3.55)

+ IABT(p1 A2Q2 + PjBiC.Q2 + P1 2BcCiQ 2) = 0
l i=1

Assuming as before that for each i, Bi and Ci are not both nonzero,

R12 TQ 12 + R 2CcQ2 + BT(pQ12 + P12Q2) (3.56)

P7, 7iBIT(pAQ + PBiCcQ2 ) = 0
Ii=1

Then we find that

cc= - - -[BT(PQ12 + P12Q2 ) + (R1 2T +.P -BiyTPAi)Q, 2]Q2 -1 (3.57)I i --1

where

R 2  R 2 + yiBTp, IBI (3.58)

The equality constraint in (3.35) and the framed equations - (3.44), (3.48),

(3.51), and (3.56) - are equivalent to equations (20), (71), (74), (75), and (76),

respectively, in (Bernstein and Hyland 1988a). There, the derivation of the first-order
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necessary conditions is completed. Essentially, it involves: (1) proving the existence of

the inverses in (3.52) and (3.57); (2) expanding both (3.44) and the equality constraint n

in (3.35) into four blocks; (3) substituting the expressions for B, and Cc into those

expanded equations; and (4) using algebraic manipulations to solve for an expression for

Ac and to find equations for the unknowns, Q and A, independent of Ac, Bc, and Cc.

The necessary conditions in final form are:

0 = AQ + QAT - QV 2 - IQT + VI (3.59) U
+ ; -y[AQAi T + (A1- B 9R2 - I )Q(Ai - BiR2 19)T] 3

I
0 = ATp + PA _ 9'JTR 2 -1. 4-+R1 (3.60)

P -y .[ A AiT^ P(N-
+ , ,[iP +(i - QV2- CC PA -V2- CA)

0 = ApQ + QApT + QV 2 - 'QT (3.61)

0 = AQTP + PAQ + 9TR2  9 (3.62) I
w h e r e Q

= QCT + V 12 + E "71Aj(Q + Q)CJ (3.63)

BTp + R 12 T + yBiT(P +- P)A, (3.64)

AQ A - C!V 2 -1C, Ap - A - BR 2 - (3.65)

IandAl Be, and Cc ae r tten in terms of the unknown variables Q, P, Qand PB as:

40I
I



U
I

IAC = A - BR2 -'9 - Q'V2 -'C (3.66)

BC =QV 1- (3.67)

cc= - R 2 
1 9 (3.68)

I
3.5 Modifications for Stratonovich Noise Model

As mentioned in section 3.2, there is a simple transformation which allows us to

reinterpret the It6 equation (3.7b) - that is, our state equation - in the sense of

I Stratonovich. That transformation is given by the following theorem.

5 Theorem S.f: Given the vector Stratonovich equation,

dx t = f(xt, t)dt + G(xt, t)dt , t > to (3.69)

I where x, has dimensions n x 1 and flt is a vector Wiener process with

E{d3td# tT } = Q(t)dt, the equivalent t6 equation for the ith element of dx t is

dxi =Jf.(Xt)+ L oz, , -Jcx t) tJ +, o
2 k-I LZxit tkfL t 3.0I

This theorem is given in Jazwinski (1970, p. 131) and is formally proved by
Stratonovich (1966). It shows that a correction term must be added to the first term in

the state equations. Comparing (3.69) with (3.7b),

d- t,= ,tdt +[Alx, t t ... A , G]Ldf,] (3.7b)

and recalling equations (3.20),

AU t(~) =A 'x, G(-x )[A x A~z x A..

U Q = diag{y 1 ,,-.., 7p, V} (3.20)
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we can substitute the quantities from (3.20) into (3.70) and show that in order to give

the multiplicative white noise model a Stratonovich interpretation, we need to make the I
following substitution, I P 2

C4, 4- AX,- + A ,, (3.71)

Eliminating the common factor, X ,, and expanding A and Ai into 2 x2 block form I

[see (3.9)], we have

A C 1 A BCc 1 P A~ + B, BCi AiBicc 1
BC AC C A C B0CA, BA C 

(3.72)

Then employing once again the assumption that for each i, Bi and C, are not both

nonzero, and examining the (1,1), (1,2), and (2,1) blocks of (3.72), we find that the

Stratonovich noise interpretation may be accomplished by means of the three simple

substitutions in the plant model, IP 2
A *-,A + , , (3.73)

B.- B + E,=P -,ABi,,
2i=1I

I I
______ =__ ___

3.6 Controller Design Summary

The multiplicative white noise model of this chapter is used for the auxiliary I
inputs of the LQG/PRE error model. This auxiliary input model is combined with the

standard cost functional penalties on the auxiliary outputs to produce a new parameter-

robust design procedure. The performance/robustness tradeoff is accomplished similarly

to LQG/PRE, where the noise intensities are adjusted by means of the scalar

parameters -ti (i = 1, 2,..., p), and auxiliary output penalties are adjusted as before, by
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modifying the state and control weighting matrices (R1 and R2, respectively) as in

I equation (1.9) and substituting these modified matrices into the controller design

equations developed in this chapter.

I
I
I
I
I
I
I
I
I
I
I
I
I
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4. Optimal Reduced-Order Control

One of the great advantages of the parameter robust design techniques discussed

in Chapters 2 and 3 (as well as LQG/PRE) over p-synthesis (see section .IB) is the

fact that they lend themselves to application of a method of optimal reduced-order

controller design, called the optimal projection equations (Hyland and Bernstein 1984).

As is well-known, the LQG-optimal compensator for an nthorder plant model is also of
order n. However, the optimal projection equations allow us to specify a compensator

order nc < n and directly design the optimal compensator of that order, provided a

stabilizing ncthorder compensator exists. The optimal projection results will be stated

here directly. For a proof, see Hyland and Bernstein (1984) [for the case of no cross-

weighting in the cost and no cross-covariance between process and sensor noise], or see

Bernstein and Hyland (1988a) for the more general case. I
Given the nthorder plant,

+(t) = Ax(t) + Bu(t) + Gw(t) (4.1)

Y(t) = Cz(t) + G2w(t) I
with uncorrelated, unit intensity, Gaussian white noise vector, w, define the covariance

matrices,

V, A GJGT, V 1 2  GIG2T, V 2 - G2G2T (4.2) I

and the linear-quadratic cost functional, I

J(Ac, Be, C) = lir E( tTRIxt + 2xTR12ut + UtTR 2Ut dt) (4.3) I
T-too

If a stabilizing nhorder compensator, 3
Xc(t) = Aczc(t) + Bcy(t) (4.4) 3
u(t) = Coxc(t)

exists, the one which minimizes (4.3) is given by the design equations, I
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AC = r(A - BR2 -19 - -V2-1C)GT (4.5)

BC = rQV2 - 1

Cc= - R2 -'9GT

whereI whereQA -QCT+V 1 2 , !P - BTp +R 2 T (4.6)

* Also define_
As dA -QV 2 - 'C, A,"A -BR 2 -1 9 (3.65)

Then the n x n matrices Q, P, Q, P and r.L are the solution to the optimal projection

equations,

0=AQ+QA T - (QV2 - IQT + V, +r ± V 2 - IQTr ± T (4.7)

0 = ATp + PA _ 9TR 2 -19+Rl +rT ± TyTR2 - 9r ± (4.8)

0 = ApQ + QAp T + QV 2 - I(T r I± QV 2 - IQTr - T (4.9)

S0 = AQ TP + PAQ + 9TR2 - 19 -- ," T9TR2 - 9r ± (4.10)

I rank(O) = rauk(P) - rank(tOP) = nc  (4.11)

where r.L A I - r and the optimal projection matrix, r, is perhaps most simply

described as follows. Define a balancing transformation %F (Laub 1980) that

simultaneously diagonalizes Q and P by,

I '- 10q- I =' TpI = A (4.12)

A A dag{A 1,A2 ,...0,o

I
I 4
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Then [ 0
TT I c 0 (4.13)

0 0

Also,
G=[In 

0 1]*T and r=[in 01]1-i (4.14)

Note that the modified Riccati equations (4.7)-(4.8) and the modified Lyapunov I
equations (4.9)-(4.10) are coupled together by the matrix r-L. For the case of a full-

order compensator (nc = n), we have r = G = r = I and rj. = 0, so the terms involving I
Tr disappear. In that case (4.7) and (4.8) become the standard observer and regulator

Riccati equations of LQG control, and equations (4.5) become the standard state-space I
solution for the controller. Also, in the full-order case, the Lyapunov equations (4.9)
and (4.10) become superfluous. Notably, these equations must be solved for the
observability gramian, Q, and the controllability gramian, P, if one wishes to balance
and truncate the plant to produce a suboptimal reduced-order controller. The coupled

structure of the optimal projection equations shows that, in a sense, the balancing and

controller design must be carried out simultaneously in order to preserve optimality. In
the general case, where possibly n, < n, Q and P are referred to in the literature as the I
observability and controllability pseudogramians.

Clearly, the optimal reduced-order design equations apply to LQG/PRE, since I
LQG/PRE differs from standard LQG only in the fact that the values of V,, V 2, R1,
and R2 are modified, as in (1.9). Optimal projection may also easily be applied to the 3
frequency-domain method of Chapter 2. The auxiliary input modeling phase of that
method merely involves augmentation of the plant dynamics and augmentation of the 1
covariance matrices V1 and V 2 to account for additional noise sources. The auxiliary
output modeling phase only modifies the weighting matrices R1 and R2. Therefore, the

modified model of the plant, the modified noise model, and the modified cost criterion
still constitute a standard LQG problem. That being the case, the optimal projection
equations may be applied directly.

The time-domain method of Chapter 3, however, does not conform to the

standard LQG framework, because the multiplicative white noise model of the auxiliary
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inputs requires a change in the structure of the state and/or output equations of theI plant. Fortunately, optimal projection may still be applied. The optimal projection

equations, as stated above, may be derived by the Lagrange multiplier method of

section 3.4 (Hyland and Bernstein 1984). More specifically, the rank conditions (4.11)

are enforced in the course of the algebraic manipulations which follow after taking the

partial derivatives of the Lagrangian. In fact, the same rank conditions may be applied

to the more general multiplicative white noise problem (Bernstein and Hyland 1988a).

These rank conditions did not appear explicitly in Chapter 3, because the algebraic

manipulations were referenced to the paper just mentioned. Also, Chapter 3 was
concerned only with the case of a full-order controller. Of course, the full-order case is

still important, since a restriction, nc < n, on the controller order generally results in an

increase in the value of the cost functional, J, and therefore brings about a degradation

in performance.

By including multiplicative white noise in the state and output equations of the

plant, as in Chapter 3,

p

dx, = Axdt + E -tiAiztdvit + Butdt + -f_,iBiutdvit + Gldflt  (3.1)

P

dyt = Cztdt + E 7tCixtdvi, + G2dt (3.2)

we obtain a general model which applies to all of the parameter-robust controller design

methods discussed in this work. For a method in which multiplicative white noise is

not desired, we may set Ai = Bi = Ci = 0 in (3.1)-(3.2) to obtain (4.1). The optimal

ncth-order compensator (for nc _< n), if a stabilizing compensator of that order exists, is

given by

IAC = r(A - B 2 -'9 - QV 2 - C)GT (4.15)

3 BC = f/2V-'

c c =- _ 2 - '9GT

where Q, P, Q,P, and r ± are the solution to the more general optimal projection
* equations,

I 47
I



I
I

-=AQ+QAT -QV 2 lQT + v 1 +7 1QV 2  lTT (4.16) I

+ ~f -,AQA T + (Ai - BiR 2 - I )Q(A,- Bj 2 - )T]

0 = ATP + PA _ 9TR2 -l1 + R, TTr 2 - PTk- I . (4.17)

+r f, ,[AAJPAi + (Ai - QV 2  AC)T - iQV 2  C)]

0 = A Q+ OAp T +Q (V 2 -Q T -r I Q 2 TT.L T (4.18)

T ' T'+ 19T -I 19
0 pAQP PAQ + R 2 9-T r 2  97. (4.19)

rank(Q) = rank(P) = rank(OP) = n, (4.20) I

I
The n, x n matrices r and G, and the n x n matrix r.± are determined by Q and P as

described above, and the following definitions from Chapter 3 apply.

V 2 
-  V 2 + pCQCT (3.53)I

RA R2 + jBTP1 B i  (3.58) 3

Q -QC r + V 1 2 + = XyAi(Q + Q)CiT (3.63)

BTP + R 12T + .yiBT(P + P)Aj (3.64) 3
AQ AA -QV 2-'C, A, -A-BR2 -' (3.65)

The numerical solution of the coupled Riccati- and Lyapunov-type equations in

this and the previous chapter require an iterative algorithm. The algorithms used to I
solve these equations will be discussed in Chapter 5.
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5. Methods and Algorithms for Controller Design

Chapters 2, 3, and 4 described the basic theory needed for the controller design
techniques under study. This chapter is concerned with the practical problems involved

in applying the design methods to an actual control system. In the sections that follow,

a few of the more important implementation considerations are discussed which arose
over the course of this research. Solutions are given to these problems, and algorithms
are described in detail.

I 5.1 Selection of Cost Functional Weighting Matrices and Covariance Matrices

When relatively little is known about the physical meaning of the dynamics of a
control system's state-space model, it is common practice to oversimplify the cost and
covariance matrices for LQG controller designs. One method is to assign scalar-

weighted identity matrices, as follows:

SR 1 = I, R 2 =pI, R 12 = 0 (5.1)

E{vvT} = I, E{nn } = pJ, E{fu T} = 0

where v and n represent the process and sensor noise vectors, respectively. The idea,

then, is to reduce the LQG design process to the selection of two scalar parameters -

p, to adjust controller authority, and p. to adjust the tracking speed of the Kalman

filter. Although it is generally not possible to know the cost matrices which will give

the most desirable response or the covariance matrices which most accurately describe

the noise, we may take advantage of what knowledge we have about the simply

supported plate under study to take a more meaningful design approach.

A large class of damped flexible structures, including those modeled by finite-

element methods, can be expressed in spatial coordinates by the following differential
equation:

M4(t) + Ce4(t) + Kq(t) = f(t) (5.2)

where q denotes the n-dimensional spatial displacement vector and f denotes the
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n-dimensional applied force vector. M, C, and K are symmetric mass, damping, and

stiffness matrices, respectively. Assuming the structure has proportional damping (i.e:, I
C = kjM + k2K, for some scalar constants k1 and k2), the matrices M, C, and K can be

simultaneously diagonalized by a left and right multiplication. In other words, the 3
system may be decoupled into modal coordinates by means of a variable substitution, so

that

mi,(t) + c,-,(t) + kxi(t) = f,(t), i = 1, 2,..., n (5.3) 1
where xi represents the "displacement" of the ith mode. The proportional damping

assumption tends to hold, for all practical purposes, when the damping is very light, as I
is the case for many flexible structures and in particular for the one studied in this

work. Also, the identification procedure used to obtain a model of the simply supported

plate assumes a modal system. In terms of modal natural frequencies and damping
ratios, wi and C, respectively, an equivalent expression for (5.3) is f

li(t) + 2(jwji(t) + wi2xi(t) = ui(t), i = 1, 2,.. ., n (5.4)

Then the modal frequencies are expressed in terms of the diagonalized mass and

stiffness matrices by 3
W2  k (5.5)

The energy contained in each mode is the sum of the modal potential and kinetic 3
energies,

E, = k,2 + ~m±2 (5.6)U

Therefore, I

Ej cx wi2 2 + 2 (5.7) 3
Rather than penalizing all of the states equally, as in (5.1), it seems reasonable to 3
penalize the total energy in the system. Then the controls may be penalized as before,
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or individually, to balance the tradeoff between modal energy and control effort. If we
order the displacements and velocities into a state vector, 7A [iT iTIT, this is

accomplished by the cost matrices,

R1 ,2 ], R 2 = diag{p, Pr2,.. .prM}, R12 = 0 (5.8)I RI= 0 1

for a system with m controls, where ft A diag{wl, w2,.. .,w. . For the system under

study there is only one control input, so this technique leaves only one parameter to

adjust. In section 5.2 it will be shown how the cross-weighting matrix, R12, may be

manipulated to suit other design goals.

The covariance matrices can also be given a more sensible structure, although

the modifications involved may not be significant enough to gain much advantage. For

controller design purposes the state and output equations for the plant are expressed in

modal coordinates:

= AT + Bu + G1 w A' + Bu + [gll 912[n (5.9)IV
1 yCY +Du +G 2 W CX +Du +[ 2 1 922I[ ]

I It is assumed here that the process and sensor noise are independent of each other.

Hence, we have partitioned the exogenous noise vector w into process noise v and sensor

noise n. Since sensor noise would only occur in the output equation, 912 = 0. Also, w is

assumed normalized by G1 and G2 such that E{wwT } = I.

I One might arbitrarily assume that the elements of n each affect one modal

output in y and to the same degree, so that 922 = pA,11 2 1. However, any judgment about

the relative intensities and distribution of the sensor noise should be made in sensor

coordinates. Denote the sensor measurements as a sum of a true signal and sensor

noise, as follows:

Yma = Y. + g.nf (5.10)

The relationship between the sensor outputs and the modal outputs is given by

Ymeas y (5.11)
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where the sen~sor eigenvecior (or rodeshape) matrix has at least as many rows as
columns and indicates the relative participation each modal output has on each sensor.
The output equation in modal coordinates is approximated by the least squares

solution,

y= (§T,@) - I§Tym.a = Vy. + ,A'gafl (5.12)

where V# is the least squares pseudoinverse of §, or simply the inverse if § is square.

Comparison of (5.12) with the output equation in (5.9) reveals that simply setting

922 = P, 1121 ignores the structure of the modeshape matrix. Instead, for E{non,) A I we

might reasonably set g. = p. 1121 if all of the sensors are identical and function I
independently of one another. That gives us

922n = §#9.n, = p,, 12 #n. (5.13)

The original sensor noise vector n should be replaced by the possibly higher dimensional I
vector n., giving 3

922 = P/ (5.14a)

but that does not affect the dimension of V2 4_ G2G2T _ 9 2 1921T + 922922 T. Therefore,

V 2 = g 2 19 21T + pV§#f#T = g 219 21T + p(tTj)-1 (5.15)

Note that the same result for V2 may be arrived at by replacing (5.14a) with I
922 = Pv1/2 t~) - 1/2 (5.14b)I

This alteration has no effect on V12 A GIG 2T either because, as was already indicated, 5
912 = 0. Using (5.14b) allows us to retain the lower dimensional sensor noise vector n.

I
I
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5.2 Disturbance Cancellation and Inverse Optimal Control

When the process noise disturbance is expected to lie in some limited frequency

range, it is a highly inefficient allocation of control effort to attempt to reject that

disturbance by merely lowering the control penalty, Pr, and sensor noise covariance, P.,
until the desired degree of rejection is achieved. That procedure results in greater

disturbance rejection at all frequencies and potentially requires an unacceptable amount
of control effort (as well as excessive sensitivity to sensor noise) to achieve the specified3 level of rejection in the anticipated disturbance frequency band. Rather than raise
controller authority at all frequencies, it is more desirable to concentrate the control

effort where it is needed.

Suppose we have the following plant and colored disturbance model, respectively:

I, = Ax, + Bu + G~w (5.16)

y = CxP + Du + g21w + g22n

I 5i., = AWz,,, + BWV (5.17)

W = CwXW

I Augmenting the plant with the shaping filter dynamics yields

_iIxp A GwCw]xxw][B]+jO}w (.18)dt 0 Aw 0+ (5.8

C + Du + g22n

If we assume complete knowledge of the augmented state, the feedback

u u=-FxA- [FP FL] (5.19)

produces the closed-loop system and output matrices,

I
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IAct= A - BFP W.- F, (.0
0 AW

Ccl= C- DFP 921C.- DFw]

If 921 is nonzero, there are two components of the disturbance - one which enters

through G,. and influences the states, and the other which enters by way of 921 and
feeds through to the outputs. Both components are completely canceled if F, is chosen

such that 3
GC, - BFW = 0 (5.21a) 3
g21C. - DF, = 0 (5.21b)

Both conditions cannot in general be met simultaneously. However, the type of

pro')lem under study has a favorable structure in this regard. For the nm-mode flexible

structure model studied in chapters 6 and 7, the control input and disturbance are

forces and affect only the derivatives of the velocity states. Also, the measurements are

modal accelerations. Therefore, the matrices B, G, , D, and g21 take the form,

B '=[] Gw=[O] (5.22)

D = b, g2 1 =g

and both (5.21a) and (5.21b) reduce to: 3
bF = (5.23)I

A solution, F,,, that satisfies (5.23) cannot be found in general unless the nn x m matrix

b has rank nm. This condition requires that the number of actuators be at least as great 3
as the number of modes in the plant model (i.e., m > n_). If m < n, it may not be
possible to completely cancel the disturbance, but we can still choose F. to cancel the 3
effect of the disturbance on m of the modes by selecting the corresponding m rows of b

and g to replace the full matrices in (5.23). 3
I
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If the state feedback (5.19) must pass through a low pass smoothing filter before

entering the plant through B, the above technique may still be applied, but it is no

longer possible to cancel the disturbance at all frequencies simultaneously. Define the

smoothing filter transfer function, HI(s) = C,(sI - A,) - 1B1. Then the condition onF
which produces exact cancellation of the disturbance at frequency Wd is:

bC,(jwdl - A,) - BFx,,,,(jd) = gC.XW(jd) (5.24)

I The vector xW(iwd) is found by applying a sinusoid of frequency Wd to the input of the

disturbance shaping filter (5.17) and measuring the response of x. in the frequency

I domain. Assuming v is a scalar, as is the case in our single disturbance input model, we

set

v(t) = sin(wdt) (5.25)

Then, after taking the Fourier transform of (5.17) and solving for x. we have

x(jwd) = (jwdI - A,) - 1Bv(jwd) (5.26)

Substituting (5.26) into (5.24) and eliminating the scalar V(jwd) from both sides of the

equation, we arrive at:

I bC,(iwdI - A,) -BF,,(jwdI - A.) - 1B = gC(jwdI -A)- B, (5.27)

I
When estimator-based feedback is necessary, infinite disturbance rejection is no

longer possible, but the disturbance cancellation technique may still be used to provide

good rejection if the estimates of the disturbance states are accurate. Therefore, the

effectiveness of this technique depends on the accuracy of our knowledge of the plant

(particularly at the disturbance frequency, where the control effort is concentrated) and

on the speed of the estimator.

I Conceptually, disturbance cincellation depends on the separability of the

estimator and regulator designs. The method just discussed assumes that the estimates

of the disturbance states are available for feedback so that the corresponding regulator

gains can be designed to cancel the disturbance. This restriction presents a problem
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when the plant model involves multiplicative white noise (as with the time-domain

technique of Chapter 3) or when an optimal reduced order controller (see Chapter 4) is I
desired. In both cases, the separation principle of LQG does not hold, because the

controller solution involves coupled Riccati- and Lyapunov-type equations [see (4.16)- I
(4.19)]. As will be discussed in section 5.5, however, its application is most desirable

under precisely these conditions. 3
Fortunately, disturbance cancellation can be adapted to problems involving a

coupled regulator and estimator by applying an idea based on inverse optimal control. 3
The inverse problem of optimal control for linear state feedback problems was first

investigated by Kalman (1964). Given a linear state feedback law, u = -Fz, the

inverse problem is concerned with finding all cost functionals,

J = [(t)TRix(t) + 2x(t)TR12u(t) + u(tTR2 U(t)] dt (5.28)
20

for which the control law is optimal. That is, given F, find all corresponding matrix

triples {R,,R12,R2}. Returning to the disturbance cancellation problem, F is considered

known, because we can set F. = 0 and solve (5.23) or (5.27) for F., assuming for the

moment that we have a standard LQG problem. By applying inverse optimal control,
we can then solve for cost matrices - R 1, R12, and R 2 - which provide us with a

regulator to cancel the anticipated disturbance. These cost matrices may then be used I
to design a controller with coupled regulator and estimator for problems involving

multiplicative white noise or optimal reduced-order control. 3
Kalman resolved the inverse optimal control problem for single-input systems,

with the restriction: R 12 = 0. He showed (Kalman 1964, Theorem 6) that a solution, 3
{R1,R 2}, exists if and only if a certain condition on the return difference function -

now known as the Kalman inequality - holds. The restriction on R1 2 is not a concern 3
for many problems, because any crossweighting may effectively be eliminated by a

suitable modification of the system matrix and the addition of artificial state feedback

to compensate for that modification. In estimator-based feedback systems where the

separation principle does not hold, however, that method of formulating an equivalent

problem is no longer valid.

Kreindler and Jameson (1972) showed that if a nonzero crossweighting is

allowed, the inverse problem always has a solution. Since they were concerned with the
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conventional problem of finding all solutions, {R1,R 12,R2}, their approaches are so

general (e.g., allowing Riccati solutions not to be positive definite) that they make it

difficult to find a single solution.

When only a single solution is sought, as is the case here, the inverse optimal

control problem is much simpler. Let R2 = I and assume that the state feedback law

I which provides complete disturbance cancellations given by: u- Fz. Then the

integrand of the cost functional (5.28) can be rewritten as follows:

zTRIz + 2'TR12U + UTR2U (5.29)

= T(R- R 1 2 R 2 - IR2T)X + (u + R 2 - IR 12 TX)TR 2 (U + R 2 - R12 TX)

= XT(RI - R 1 2RI2T)X + xT(R 1 2T - F)T(R1 2T - F)x

Since a negative cost is physically impossible, we must assume that

R, - R 1 2 R 2 - 1R12T - R, - R 12R 1 2T > 0 (5.30)

I where "> 0" denotes positive semidefiniteness. Therefore, a set of cost matrices for

which F minimizes the cost functional (in fact makes it zero) is:

IR,R 12,R 2} - {FTF,FT,I1 (5.31)

IThis means that in order to apply the disturbance cancellation technique to

multiplicative white noise or optimal reduced-order control problems, we can use the

3 following algorithm:

3m (1) Solve (5.23) or (5.27) for F.

(2) Arbitrarily set FP = 0, so that F = [0 F.]

(3) Compute the desired cost matrices according to (5.31)

(4) Design the controller using the cost matrices from step (3)

-- As in the case of LQG problems, the effectiveness of this algorithm depends, in a sense,

on a good estimator, since accurate knowledge of the states was assumed. Even though

there is no explicit estimator in these modified LQG controllers, the algorithm stated

above has worked well consistently for "large" V1 (corresponding to a fast estimator).

I
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In the event that some transient suppression is desired in addition to good steady

disturbance rejection, the algorithm may be modified by adding a penalty to the plant

states. The above algorithm yields

R, F0 0W]. (5.32)IR = 0 FW TF

The desired transient suppression is accomplished by replacing the zero submatrix of
the (1,1) block with a sufficiently "large" positive semidefinite matrix. That matrix

may be chosen by penalizing modal energy as in section 5.1 (i.e., by choosing some I
multiple of R1 from (5.8) to fill the (1,1) block). Experience has shown this

modification to the algorithm to be very effective. 3

5.3 Discrete-Time Controller Design U
Continuous-time controllers tend to be more convenient for theoretical work and 3

for frequency-domain analysis, but implementation of a control law on a digital

controller requires the design of a discrete-time controller. Ideally, the discrete-time

controller is directly designed from sampled-data model of the control system. Since

discrete-time design algorithms are readily available for the standard LQG problem, this

direct design approach was used to implement controllers on the hardware (see Chapter I
7) when neither multiplicative white noise nor optimal projection was involved. The

development of the sampled-data version of those modified LQG problems, as well as

the algorithms necessary to solve for their respective compensators, is beyond the scope

of this work and arguably could be considered a duplication of effort. A good 3
approximation to the directly designed discrete-time controller can be obtained by

discretizing the corresponding continuous-time controller. Of course, the approximation

is particularly good when the sample rate is high. Therefore, it is fortunate that

optimal reduced-order controllers tend to make higher sample rates possible.

The remainder of this section discusses two considerations which should be taken
into account in designing a discrete-time controller.

A. Conversion of Cost and Covariance Matrices to Discrete-Time

In sampled-data controller design, the continuous-time model of an actual I
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continuous-time plant is translated into a discrete-time equivalent, and there is

relatively little intuitive understanding for the meaning of the resulting discrete-time

variables. Therefore, rather than designing the compensator entirely in discrete-time, it

makes more sense to specify the cost functional and noise covariances in continuous-

time and then translated them to discrete-time for computing the optimal discrete-time3 controller. Assume the continuous-time plant model,

3 i(t) = Ax(t) + Bu(t) + w,(t) (5.33)

y(t) = Cx(t) + Du(t) + W2(t)

I where the noise covariances are given by:

E {wi(t][w2T(t) w 2T(t)]} = vT V2 ](t) = Vb(t) (5.34)

3 And define the zero-order hold equivalent of the plant:

3 Xk + I = t(At)xk + r(At)uk + wlk (5.35)

Yk = Cxk + Duk + W2k

I where At is the sampling interval, the subscript "k" denotes the sampling instant for

k = 0,1,2,... (i.e., xk A x(tk), where the kth sampling instant occurs at time tk), and

§(,At) = eA At (5.36)

r(at) = ft(t)dt . B

Uw fk = ft 4 + (t - tk)Wl(t)dt (5.37)
tk

I W2k = w2(tk)

I Then the discrete-time equivalent to the continuous-time cost functional, (5.28),

takes the form,

J' = E [ThlXk + 2xkTkl 2 Uk + ukTR 2uk] (5.38)
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where the discrete-time cost matrices are denoted with carats and are given by (Stengel

1986, pp. 276-7):

0

A12 = f §T(t)[R(t) + R12 .dt
0
at Tt m~

At

R2 = f [rT()Rxr(t) + rT(t)R 12 + R12Tr(t) + R2]dt 3
The discrete-time equivalent covariance matrices are computed by their

definitions, using (5.34) and (5.37) as follows:

Fv~iA Ew IWIL.WT] (5.40)

-kf t' § k+(t - tk)WI(t)dt f tkI 1 T(t)§T(t - t)d] 3
= f 'k +If 'k + I (t - t k)E w(t)wi (t)]§r(T - k)ddt

t k tk I

= f tk + 1 t(t - t) ftk+ Vl6(t_ - )T(rt)drdt

tk I

-- E w Iw 2 T] (5.41) 3
--E [ftk+ I 4(t - tk)w,(t)dt W T(t)]

- f tk + 'I(t- tk)Ewl(t)w2 T(tk)]dt

- f 'k +1 I(t - tk)V 1 2 6(t - tg)dt

'kF ] 6I
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fl,2  E 1W 2kW2 kT] (5.42)

U=E [W2 tkW2 Ttk)]

= o) ???

From (5.42) we see that the literal translation to discrete-time results in an infinite

sensor noise covariance. If (5.42) were used for the controller design computations, the

Kalman filter would degenerate to an open circuit. The problem arises from the fact

that the S-correlated, infinite-power white noise model assumed by LQG theory does

3 not reflect reality. Intuitively, it seems desirable to retain the structure of the

covariance derived in (5.42), while changing the scalar multiplier to a finite number.

Gelb (1984, p.121) argues in favor of using

I '(5.43)

because the resulting discrete-time sensor noise covariance approaches the continuous-

time covariance as At-.O. That was the method used for this study, although the actual

scalar multiplier used is not important, since it tends to become a design parameter in

3 practice.

The matrix integrals used to compute the discrete-time cost and covariance3 matrices are easily evaluated numerically - for example, by means of the forward

rectangular rule. Only 20 to 30 intervals were required for good accuracy in the

3 examples of this study, but fewer are necessary for smaller At.

I B. Computational Delay

3 Standard LQG compensators (i.e., those with a Kalman filter separate from the

regulator) are easily modified to overcome the computational delay inherent in discrete-

time controllers. For a one-sampling-interval time delay, the Kalman filter

extrapolation and update equations need merely to be reordered to turn the Kalman

filter into a one-step-ahead predictor. The predicted state estimates are then fed back,

I by means of the regulator, so that the proper state estimates reach the actuators at the

proper time.
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In problems involving multiplicative white noise and/or optimal projection, the

lack of an explicit estimator makes that procedure impossible. If the continuous-time

controller is simply discretized, there will be a one-interval time lag between the time of

the intended controller command and the instant that command reaches the actuators. 3
For faster sample rates, the problem is smaller and may not be significant. In case the

computational delay is significant, it should be modeled in the control system.

A pure one-interval delay is precisely modeled by inserting the irrational transfer
functionI

Hnt( s) = e-8 -At (5.44)

between the commanded control signal leaving the controller and the actual control I
input entering the plant. However, since HD(s) is infinite-dimensional, a suitable finite-

dimensional approximation must be found - preferably of as low order as possible, 3
because additional dynamics tend to complicate controller design computations and

increase controller order. Pad6 approximations to e-s-At are useful in this context. A 3
Pad approximation tends to be more accurate than the Taylor series approximation of

the same order, and it is easily computed (Bender and Orszag 1978, secs. 8.3 and 8.4).

As an example, the second-order Pad6 approximation to (5.44) is given here:

I - . At + 2 . ,At)S  I
+HD(SA) 2) (5.45)

1p , + ',. "&t + -1'42 '&t)2 s.s

~2 + VS+ AL

5.4 Iterative Relaxation Algorithm for Solving Coupled Riccati/Lyapunov Equations I
As mentioned in section 4.1, problems involving multiplicative white noise or

optimal controller order reduction require an iterative method to find a solution to the

coupled extremal equations. A number of different algorithms are described in the

literature, but they all belong to one of two categories (or are a hybrid of the two) - I
iterative relazation methods and continuation (or homotopy) methods. The idea behind

the iterative relaxation approach is to alternately solve the coupled equations for one

unknown at a time while treating the other unknowns as constants. The main
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advantage of this method of solution is that it requires no prior analytical development,

assuming standard Riccati- and Lyapunov-equation solvers are already available, and it

is therefore easily and quickly implemented. The main disadvantage is that this type of

algorithm is not guaranteed to converge to a solution.

The iterative relaxation algorithm detailed in this section is a variation on one

described by Bernstein and Hyland (1988b, pp. 290-91). The algorithm contains two

nested loops and is designed to handle the general reduced-order controller problem in

3 the presence of simultaneous state-, control-, and measurement-dependent noise. More

specifically, it attempts to solve the general optimal projection equations, (4.16)-(4.20),

for Q, P, Q, P, and rj and subsequently to find the controller state-space matrices -

AC, B., and Cc - using (4.15). If a full-order controller is desired, the algorithm is

easily modified by removing the outer loop.

Define the absolute norm of an m x n matrix M as follows:

SMII1A _ max(M,,, i = 1,2,...,rm;j = 1,2,...,n) (5.46)

I The iterative relaxation algorithm used in this study will now be stated:

3 (1) If the Stratonovich multiplicative noise interpretation is desired, modify A, B,

and C using the substitutions prescribed in (3.73).

(2) Perform initializations:

(a) Let -i = 0 (i = 1,2,...,p) and r = In (i.e., r _ = 0).

(b) Solve Riccati equations (4.16) and (4.17) for initial values of Q and P.

(c) Solve Lyapunov equations (4.18) and (4.19) for initial Q and P.

(Note: this initialization corresponds to the standard LQG solution.)

6
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Beginning of outer loop:

(3) Update the optimal projection matrix, 'r:
(a) Compute a balancing transformation, %P, such that:

'k - I - = fTh = A (5.47) I
A - diag{A1,A2,...,A-)

(Laub 1980). Note: all Ai (i = 1,2,.. .,n) are nonnegative real. I
(b) Perform a basis rearrangement:

Rearrange the Ai so that A, _ A2 >...> A, , then rearrange the U
corresponding n columns of I using that same ordering.

(c) Compute

r 0 (5.48)

where I
.A { A ,. A n (5.49)c c " 1 n1

(4) Test for convergence of Q, P, 0, P, and r (condition to leave outer loop): 3
(a) Compute relative errors, as follows.

eq AI[r.h.s. of (4.16) IIAviIk (5.50) 3
ep Ir.h.s. of (4.17) 16/!R,1i

e& A I1r.h.s. of (4.18)[LAI Qv 2
1Q T

ep IIr.h.s. of (4.19) ll At PT R2-'91P

(b) If max{eQ,ep,e,e'p} < el (the outer loop tolerance), go to (14). 3
Otherwise, go to (5).

Beginning of inner loop:

(5) Update V2, R2, Q, and 9 using equations (3.53), (3.58), (3.63), and (3.64).
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(6) Update Q:
Solve Riccati equation (4.16) for Q by treating the terms involving -y, and
r ± as constants, effectively adding them to V1. The -ti term in the3 definition of Q should be added toV 12, effectively defining a modified

cross-covaiance.

(7) Repeat (5).

1 (8) Update P:
Solve Riccati equation (4.17) for P by treating the terms involving -yj and3 r L as constants, effectively adding them to R1, with one exception. The

-y term in the definition of 9 should be added to R12, effectively defining3 a modified cross-weighting.

3 (9) Repeat (5) and update Ap using equation (3.65).

(10) Update Q:

Solve Lyapunov equation (4.18) for Q by treating the term involving r±
as a constant, effectively adding it to the other constant term.3 (11) Repeat (5) and update AQ using equation (3.65).

(12) Update P:
Solve Lyapunov equation (4.19) for P by treating the term involving r ±

as a constant, effectively adding it to the other constant term.

(13) Test for convergence of Q, P, Q, and P (condition to leave inner loop):3(a) Compute maximum relative change since the last iteration, as follows.

AQ 1~ -Q- AQ (5.51)

-A Pi Pi IIAI Pi IA

4 1? P II A - '-' IIAI1PA
where the superscripts indicate the iteration number of the inner loop -

i being the current iteration.
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(b) If max{Q,P,Q,P} _5 C2 (the inner loop tolerance), go to (3).

Otherwise, go to (5).

(14) Compute G and r using equations (4.14). U
(15) Compute Ac, Be, and C, using equations (4.15). 3

We should recall that the optimal projection equations are necessary conditions 3
for the solution of optimal reduced-order controllers. According to Hyland and

Bernstein (1988b, p. 292), for an nthorder plant with m control inputs and I sensor

outputs, there is only one solution if n, > min(n, m, 1), but otherwise there may be as
many as

(my sin(n, m,l)I A [min(n, m, )1!

~n. [min(n, m,l1) - nj -nJ!

solutions. The choice of initial values for Q, P, Q, and P corresponding to the LQG
solution in step (2) is an attempt to begin the iterations as close as possible to the

optimal solution sought, therefore minimizing the risk of convergence to a suboptimal

solution and reducing computation time. However, for the problems treated in this U
study, m = 1. That allowed the controller order to be specified as low as needed
without concern for the existence of multiple solutions to the optimal projection 3
equations.

The most difficult parts of the algorithm to establish are the convergence tests 3
and tolerance specifications. These are important, since a test which is too stringent

will never be satisfied, and a test which is too relaxed will not allow the algorithm to 3
converge. In either case, the algorithm becomes an infinite loop. Unfortunately, the

tolerances must be adjusted to suit the problem at hand, because the values of the most

effective tolerances are somewhat sensitive to the plant model and even to controller

authority. Although both tests are in some sense normalized, they are not universally

applicable with the same tolerances.- When the algorithm is repeatedly applied to the I
same plant model, acceptable tolerances can be chosen after some experimentation.

Otherwise, it is advisable to do one or more of the following: (1) monitor more than one 3
indicator, (2) make the tolerances automatically adaptive, or (3) give the software the
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capability to accept manual changes in the tolerances between iterations.

The convergence test used for the inner loop - step (12) - was chosen because

it is very cheap computationally to monitor changes in values since the last iteration.

This type of test has also proven to be quite effective in determining convergence, even

when compared to more sophisticated tests. The outer loop convergence test - step (4)

- was suggested by Richter and Collins (1989). It seemed to be the logical choice for

the outer loop (or for the only loop if both are not present), because it monitors the

3 equation errors directly, although it requires much more matrix arithmetic. Still

another convergence test for the outer loop was suggested by Hyland and Bernstein

(1988b, p. 291):

trace(r)- (5.52)
nc

for some tolerance e. This test is based on the property - trace(r) = nc - when3complete convergence has been attained. To see why this property holds, recall

equations (4.13) and (4.14), and note that

r = GTr, FGT = I% (5.53)

ThenI trace(r) = trace(GTr) = trace(rGT ) = n, (5.54)

I Step (5) - the update of matrix values which appear in the Riccati- and

Lyapunov-type equations - is repeated in several places throughout the algorithm in

3 order to give those equations the most recent information. It may be omitted in some

places in order to save a little computation time, but the algorithm may diverge if it is

* not repeated frequently enough.

3- 5.5 Homotopy Algorithm for Solving Optimal Projection Equations

3Several homotopy algorithms have been developed to solve the optimal

projection equations, but as of this writing they have only been hinted at (e.g., Richter

1987; Richter and Collins 1989) and have not been published in explicit form iy, archival

journals. For that reason, a homotopy algorithm is developed here, although with the
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restriction that it applies to optimal projection only (i.e., multiplicative white noise is

not included). A similar algorithm for the more general case may be derived based on

the principles given in this section, although it would likely be much more complicated.

The presence of multiplicative white noise adds several new terms to the Riccati and 3
Lyapunov equations, resulting in the appearance of all five unknowns (Q, P, Q, P, and

-r) in all four equations when state-, control-, and measurement-dependent noise are 3
present.

Examination of the optimal projection equations (4.7)-(4.11) reveals that the

, gree of coupling among the Riccati- and Lyapunov-type equations is directly related

the "size" of the matrices V 2 and R 2. When the sensor noise covariances and control

penalties are large, the coupling is reduced. However, when large controller authority I
(i.e., small V 2 and R 2) is desired, the interaction among these equations tends to be

great, and the iterative algorithm of section 5.4 is less likely to converge to a solution. 5
This problem frequently occurred when the disturbance cancellation method of section

5.2 was not used and the resulting controller authority needed to meet disturbance 3
rejection specifications was necessarily high. Rather than alternately solving for Q, P,

Q, and P, repeatedly, the homotopy algorithm replaces this inner loop iteration with

numerical integration and finds these solutions (for fixed r) in a single pass. It does so

by continuously deforming the Riccati equation solutions from a known solution (e.g., I
the LQG solution) into the solution sought.

Homotopy methods of solving complex equations, such as the one described here,

are developed in three steps: (1) Find the solution to a simple, but related equation; I
(2) Express the relationship between the solutions to the simple and complex equations

in terms of a differential equation; and (3) (Numerically) integrate the differential 3
equation to obtain the solution to the complex equation. Given a function F:R"--R",

suppose we seek the solution, u, to F(u) = 0. Define a function H: R' x [0, 1]-+.R such 3
that:

(a) H(u(a),a) = 0 for a E [0,11 (5.55)

(b) H(u, 1) = F(u)

(c) a solution u(0) to H(u(0),0) = 0 is knowI

Then if H is atinuous and (OH/u) - exists over the entire interval a E [0,1], the 5
solution u(1) to H(u(1), 1) = F(u) = 0 may be found as follows. First, differentiate
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H(u(a), a) 0 with respect to a using the chain rule for vectors (Graham 1981, sec.

4.3):

dH(u(a),a) du(a) OH(u(a),a) OH(u(a),a) =
a = Ou(a) + aa - (5.56)

5 Then

du(a) aH(u(a),a) (OH(u(a),a) (557)
da = aa au() )

Since u(O) is known, we can treat (5.57) as an initial value problem, integrating

du(a)/da over the interval from 0 to 1 to obtain the solution u a u(1). For a more

complete discussion of homotopy methods, see Richter and DeCarlo (1983).

I Before applying the homotopy principle to the modified Riccati equations (4.7)-

(4.8), it is advisable to rewrite these equations in vector form in order to avoid the

I problem of taking derivatives of a matrix with respect to a matrix. Recall equation

(4.7):

0 =AQ+QA T - QV 2 -IaTVI + .L.QV2 - lQTr _T (4.7)

I where Q 4 QCT + V 12, and assume r.L is fixed. Then the equivalent equation in Q that

we wish to solve is:

FQ(vecQ, vecQ T ) = (A e A) vecQ + vec V, - vec( lV 2 - 1QT) + r*vec(0V 2 - IQT)

=0 (5.58)

3 where

T T 7®_ (5.59)

If the last term in (5.58) [or (4.7)] were not present, we would have a standard Riccati

equation, whose solution is easily foind. Therefore, a logical choice for the function H

is:
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HQ(vecQ, vecQT, a) = (A e A) vecQ + vec V , - vec(QV 2 - 'lT) + ar'vec(QV2 - QT)

=0 (5.60)

For a = 0, (5.60) is equivalent to the standard Riccati equation, and for a = 1, we 3
recover the modified Riccati equation (4.7). Denote the initial solution for Q (i.e., the

LQG solution) by Q0, corresponding to the constant projection matrix: r ° = Ir "0 = 0. 3
Equation (5.60) is suitable if we wish to solve (4.7) only once, for constant r = r1, where

T' has been computed based on the initial values of Q and P. However, we also wish to 3
solve for r, so the outer loop of the algorithm will be updating the projection matrix,

giving r', i = 1, 2,.... Therefore, on the ith iteration we need to continuously deform a

known solution Q'-' into Q' based on our knowledge of r' and T' - . To that end,

consider the function,

H4(vecQ' , vecQT , a) = (A e A) vecQ' + vec V, - vec(Q'V 2 - Q ' T) (5.61)

+ Tri - 1vec(Q' IV, - - I T )

" a T'*ivec(QiV 2 - QiT)

- Ti -Ivec(Q i- iV 2 10i - IT) =0 I

and note that it satisfies the conditions in (5.55). For a= 0, the solution I
(vecQ' ',vecQ' - T ) from the previous iteration satisfies (5.61), and for a = 1, (5.61) is

equivalent to (5.58). Now we may develop the initial condition problem to solve by 3
taking the derivative of this function with respect to a, as follows:

dH = dvecQ' OH4 dvecQ T OH OH (6

da da OvecQ' da 5vec T =

By the definition of Q, we have: I
dvecQ iT  +d (I® C) vecQ' dvecQ' (10 C T )  (5.63)

da da vec( v da

Therefore, 3
dvecQ'r OHQ OHQ 1OHQ o

o(I CT) V veT ao= (5.64) I
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or:

dvecQ' _ - OH - + (1HC ) . (5.65)

dcr- - Oa OeQ Oe

3 where

q [T"'vec(GV 2 - -IQT) - *i- 1vec(Q' - 1V2 - i - T)]T

I 8H -
OvecQ' - (A A)T

V 2 - QiT& I)(. + (I, ®V2 - j~TI- ak~i)T

avecQ'T L(

The properties used to take these partial derivatives may all be found in Graham

(1981). The operator denoted by the subscript "(n)" is also borrowed from Graham
(1981, p. 71). It has the effect of reordering the rows of a matrix by taking the first row3 followed by each subsequent nth row, then the second row followed by each subsequent

nth row, etc. Here, n is the order of the (augmented) plant (i.e., A E Rnxn).

3 In summary, we may solve the Riccati equation (4.7) for Q' (given a fixed T") by

treating the previous solution, Q'- 1 , as the initial condition at a = 0, then integrating3 (5.65) over the interval from a = 0 to a = 1. The starting value, Q0 , is the LQG

solution for Q (i.e., the solution for Tr = 0).

3 The same procedure may be applied to the other Riccati equation, (4.8). From
the definition of P (4.6) we have:

dvec9 = ci vec(B T P' + R'T) d(I @BT) vecP' = dvecP"'I®B) (5.66)
da a cia (Ica

I which leads to:
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were= --- avecP' [ a ( B) aH? (5.67)2-- _JLavc'ivec9'.]

where

OH'[i .Ivec(giWTR2 - ,9i) - -_ Tvec(9s _ ,TR ,pI_ - 1)T T

OH'IAA
OvecP' 3
OH' [R 2 -19s® I)(.) +(Jo R2 -19i)( I-ari)I

The Lyapunov equations, (4.9)-(4.10), do not require a homotopy solution for
fixed r i, because: (a) the variables Q and P can be treated as fixed constants, since they

have already been solved for on the first pass, and (b) the term involving the projection

matrix is not a function of the only remaining variable, Q (or P), and may therefore be

treated as part of the constant term. That is, having already solved the modified i
Riccati equations for Q and P, the modified Lyapunov equations may be treated as

standard Lyapunov equations and be solved immediately for Q and P. i

The entire homotopy algorithm for the solution of the optimal reduced-order
control problem (without multiplicative white noise) is now stated. 3

(1) Perform initializations: 3
(a) Let r =I,. (i.e., rj.0 = and r 0 =0).

(b) Solve Riccati equations (4.7) and (4.8) for the initial values, Q0 and Po.

(c) Solve Lyapunov equations (4.9) and (4.10) for initial values Q0 and P0 .
(d) Set the iteration number: i = 0.

(Note: this initialization corresponds to the standard LQG solution.)
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(2) Increment the iteration number: io-i + 1.

(3) Compute the optimal projection matrix, r' (based on 0'-' and P-), exactly

as in step (3) of the algorithm in section 5.4.

3 (4) Test for convergence of Q'-', F'-, P '- , F'- 1 , and r' (condition to leave

main loop):

(a) Compute relative errors, as follows.

eq IIr.h.s. of (4.16)I AV, I (5.50)

* e~, IIr.h.s. of (4.17) IMIR, I1

e r.h.s. of (4.18) IlAQV2-1[%

ep A IIr.h.s. of (4.19) R2AI4'R-'PI

(b) If max{eQ,ep,e&,ep} :_ e (the tolerance), go to (12).

Otherwise, go to (5).

(5) Compute Q'- i and '-' (based on Q'-1 and P'- 1) using equations (3.63) and

3 (3.64), and compute T' using (5.59).

(6) Compute Q':

Numerically integrate (5.65) over the interval from a = 0 to a = 1.

" (7) Compute P':

Numerically integrate (5.67) over the interval from a = 0 to c = 1.

- (8) Compute Q' and 9' (based on Q' and Pi) using equations (3.63) and (3.64),
and update Ap and AQ using equations (3.65).

(9) Compute Q:
3 Solve Lyapunov equation (4.9) for Q by treating the term invloving Tr as

a constant, effectively adding it to the other constant term.
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(10) Compute P:

Solve Lyapunov equation (4.10) for P by treating the term invloving r . I
as a constant, effectively adding it to the other constant term.

(11) Go to (4).

(12) Compute G and r using equations (4.14). 3
(13) Compute Ac, Be, and C,, using equations (4.15). 3

7
I
I
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6. Evaluation of Designs

The controller design principles developed in Chapters 2-5 were applied to an

FDLTI model of a simply supported plate in order to study their effectiveness. This

chapter describes the complete control system model, then evaluates the comparative

value of the various parameter-robust and optimal reduced-order controller designs

based on this model. Chapter 7 applies the analytical techniques of this chapter to3 solve the problems of plant uncertainty and high controller order that were encountered

in the actual hardware.

1 6.1 Problem Description

The simply supported plate is made of cold-rolled steel. It is rectangular, of

dimensions .5m x .6m x 2.9mm, and has attached to it twelve accelerometer sensors on

one side and two point force actuators on the other side - one for the control input and

one for external disturbance generation. The accelerometers are lightweight

piezoelectric devices mounted to the plate with wax and are placed in a 3 x 43rectangular array with locations devised to assure observability of the first twelve

vibrational modes of the plate. The presence of more sensors than observed modes (i.e.,

I spatial oversampling) is a redundancy that tends to provide greater accuracy in the

sensor measurements. The actuators are electromagnetic shakers with a magnitude

frequency response from voltage input command to force output that is essentially

constant over the frequency range of interest. They are placed in locations coinciding

with two of the sensor positions and chosen such that most of the authority of these3 shakers is on the first two modes. Also, the shakers are located near node lines of

modes three and four, with the intention of limiting the "spillover" of the control signal3 into the higher frequency modes. For the experiments carried out in Chapter 7, the

disturbance signal was produced by a function generator. The zero-order hold control

signal was sent through a second-order low pass filter before reaching the control shaker

for the purpose of smoothing the signal and preventing aliasing. For more details

concerning the hardware configuration of the simply supported plate experiment, see

Rubenstein (1991).

model,The plate with actuators and sensors is described by the standard state-space
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fr,(t) = Apxp(t) + Bpu(t) + [9,, 912]w,(t) (6.1)

y(t) = CPXP(t) + Dpu(t) + [921 g2 2 ]w(t)

Expanding the matrices in (6.1), we define the modal model,

d_ P(t) I ()) +,,t) (6.2)
-]"= 0l] "(t)J] +I' I jL,,,(t)j]

Y(t) = [ - , ,] - ( + 2[ :, ,- ,,r,[wi(t)]

The time variables and their dimensions are defined as follows:

zP E R"m ....... Modal position states 3
zX E R*m ....... Modal velocity states

u E Rm .. ... ........ Control input

w, E RP .............. Process noise (disturbance input)

W2 E W ............... Sensor noise

R' ............... Modal acceleration measurements I

For the simply supported plate experiment, m = p = 1, because there is only one 3
control shaker and one disturbance shaker. The number of modeled modes, n,, varies

according to the order of the plant for which we wish to design a controller, although it 3
is limited to nine (the total number of modes thus far identified). Since we are

modeling n,, modes, the number of modal acceleration measurements is 1 = nn. This

number would be limited to twelve (the number of accelerometers), should there be

more than twelve identified modes available. The excess accelerometers provide

redundant information about the spatial accelerations from which a more reliable least 5
squares solution to the modal accelerations is computed.

The quantities 0 and Z are 'diagonal matrices of the modal natural frequencies 3
and damping ratios, respectively. That is,

I
n ,,i ,,,,,,mmnmumumnnnnmm an imni I I lI76I
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flA diag{w1 , w2,... WJ (6.3)

= 2r.diag{fl,f 2,...,fn,}

I Z A diag{(C,,( ,...,(n,,,}

3 where the modal natural frequencies and damping ratios are given in Table 6.1.

Table 6.1: Natural Frequencies and Damping Ratios for the First Nine Modes

1 i f (Hz) C6

1 1 49.447 0.007722826
2 108.96 0.011714603 3 130.25 0.008318498

4 188.53 0.002731109

3 5 203.25 0.002725023

6 265.62 0.002387554
7 285.78 0.001224449

8 326.08 0.001321583

i 9 338.30 0.002220888

3 The column vectors k, and OW are the modeshapes corresponding to the control

and disturbance inputs, respectively. They indicate the relative effect each shaker has3 on the modal amplitudes and are a function of the shaker locations. These modeshapes

are related to the sensor modeshape matrix, t, introduced in Chapter 5 [see (5.11)].3 According to the data provided by the identification procedure, the matrix 4 for a

model of the first nine modes is given (to four places past the decimal) by:

I
I
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= 0.2068 -0.5350 0.4716 -0.6245 -0.4200 -0.3708 -0.5257 -0.6133 -0.2620 (6.4)

0.4290 -0.7181 0.1104 -0.1516 -0.6814 0.4496 -0.0798 0.6420 -0.4180

0.3072 -0.4771 -0.5241 0.6138 -0.4607 -0.3951 0.4640 -0.6078 -0.2086 3
0.4001 -0.2333 0.8233 -0.1619 0.3468 -0.6213 0.5346 -0.2604 0.4473

0.7033 -0.3062 0.1353 -0.0554 0.5246 0.6389 0.1319 0.3292 0.6070 3
0.4829 -0.1404 -0.9120 0.4227 0.3599 -0.6038 -0.6515 -0.2957 0.3680

0.4468 0.2215 0.7428 0.6210 0.3438 -0.6273 0.6039 0.3454 -0.3710

0.7033 0.3664 0.1091 0.2185 0.5573 0.6715 0.1343 -0.4100 -0.5521

0.4480 0.2853 -0.8733 -0.4771 0.3848 -0.6201 -0.6411 0.3428 -0.3926

0.2803 0.4538 0.5085 1.0755 -0.5294 -0.3369 -0.7840 0.6357 0.1768 3
0.4365 0.7018 0.0766 0.2210 -0.7149 0.4368 -0.1769 -0.8063 0.3551

0.1884 0.4729 -0.5331 -1.0680 -0.4109 -0.3970 0.7980 0.5814 0.1820 5
The twelve rows of 41 are the modeshapes for the twelve accelerometer locations. The 3
control and disturbance shakers are each colocated with one of the accelerometers, so §,

and §W are given by two of the rows of §. Denote the ith row of § by Oi. Then

§U = 08T, I § = OsT  (6.5) 3
The expression for g22 was developed in section 5.1 [see (5.14b)]. When fewer than nine

modes are modeled (i.e., nm < 9), the appropriate columns of § are eliminated. For £
example, in order to model only the first four modes, we take § to be equal to the first

four columns of § in (6.4). 3
The control input, u, passes through a second-order smoothing filter before

reaching the shaker. If we denote the control command entering the filter by u,, a 3
state-space model of the smoothing filter is:

= Az 1(t) + Blur(t) (6.6) I
u() = CIZ(t

7
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*where

w hAe= 
2 1 B l= [ 2] ' C i L  1 0 ] (6 .7 )

w, = 2r 120, 1= .707

I The disturbance w, is modeled as narrowband noise centered about 60 Hz.

Conceptually, this was accomplished by passing the fictitious white noise variable v

through a second-order noise shaping filter. The state-space model of that shaping filter

is as follows:

I iw(t) = A.x-(t) + Bwv(t) (6.8)

i u() = C.x.(t)

where

Aw ,,0 2 1 Bw=I 1 Cw= 0 1 (6.8)I W ww 2WLJI L

Sw, = 2w. 60, C. =.1

Controllers are designed from the augmented plant model, comprised of the
interconnected plate, smoothing filter, and noise shaping filter dynamics - (6.1), (6.6),

and (6.8). The nthorder augmented plant is described by the following state and

output equations:

i(t) = Ax(t) + Bu(t) + Gjw(t) (6.9)

y(t) = Cx(t) + G2w(t)

I
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where p(t A Fv(t)1

.Tt I  ~) 6' (6.10)

[ A BC 9 CWlol [o 9_121
A 0 At 0 B = GI= 0 0

L 0 0 Aw B,, 0 I

C=[ C P DPC, 9 2,CJ, G 2 =[ 0 922 ]

The noise vector w(t) is assumed to have identity covariance, so the correlations among

the individual elements are specified by G, and G2, and the relative intensities of the
process and sensor noise are adjusted by means of p,, which scales 922 [see (6.2)]. As

stated in section 5.1, 912 = 0, since the sensor noise (w2) only affects the output

equation. The presence of the smoothing filter eliminates any feedthrough from the

controller command signal to the outputs. However, for many of the experiments

simulated in this chapter, the smoothing filter was ignored in order to thoroughly study

the robustness design methods on a simple model before stepping up to a full scale

model. Without the filter, the x, states are eliminated and u c = u. 3
Figure 6.1 shows the frequency responses of the plate (for nn = 4), smoothing

filter, and noise shaping filter just described. The frequency response of the plate is 3
represented by a plot of its maximum singular value. That enables the magnitude

response of the 4 x 1 transfer function matrix to be expressed by a single curve. The 3
response of the noise shaping filter is scaled so as to be visible in the magnitude range of

the plot. This curve also represents the frequency content of the assumed disturbance,

although the actual scaling depends on the intensity of that disturbance and is

considered a design parameter. The 120 Hz cutoff frequency of the smoothing filter was

chosen to allow adequate control of the observed modes (modes 1-4) while minimizing

excitation of the higher frequency unobserved modes.

8
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UFigure 6.1: Frequency Responses of Augmented Plant Components for 4-Mode Model
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6.2 Comparison of Tradeoff for Different Methods

In order to speed up computations and eliminate unnecessary complications, the I
robust control methods of chapters 2 and 3 were applied to a single mode model of the

plate (i.e, n. = 1), and the smoothing filter was omitted from the augmented plant 3
model of (6.9)-(6.10). This continuous-time augmented plant model has order n = 4.

An LQG controller was chosen for the baseline design, and after closing the loop I
it was found that system stability was particularly sensitive to two of the plant

parameters - the natural frequency, w1, and the scalar control input eigenvector, t. 3
(corresponding to the control shaker location). The cost functional weighting matrices

were chosen by combining the modal energy penalty technique of section 5.1 with the 3
disturbance cancellation algorithm of section 5.2 [using (5.23)], yielding:

II
[W,2 0 0 [ 0

R 2 = 1, R 12 = 0.1
1.00 0 0 0 0 (6.11)

0 0 0 1.0002 1.0001]

Since there is only one modal output, there is no need to worry about relative

intensities of multiple sensor noise sources. Therefore, 922 was simplified to:

922 = p 11l2 . Then, as usual, the covariance matrices were given by: g
V,= G1G1  , V 2 = 2 G2T, V 1 2 = G1G2T (6.12)

The sensitivity of system stability with respect to w, and ',, varied greatly with the

selection of pr,. For relatively large p,, (i.e., relatively, small disturbance intensity), 3
stability is more sensitive to w, and less sensitive to 4)., whereas for relatively small pv,

the reverse is true.

Both cases - sensitivity to w, and 4 - were studied in order to test the

effectiveness of the various parameter-robustness methods under different conditions. If

one method were clearly and consistently superior to the others, it would stand out

during these tests. Since the same auxiliary output weighting technique is common to

LQG/PRE, the frequency-domain method of Chapter 2, and the time-domain method of

82 1
I



I

Chapter 3, the comparative effectiveness of these methods was studied by improving

robustness of system stability using only auxiliary input noise. Separately, only

auxiliary output weighting was used. Then the effect of combining the two was

demonstrated.

3 A. Uncertainty in Natural Frequency

When the cost matrices in (6.11) are combined with the noise intensity

parameter, p. = 10 -, a + 3% error in the natural frequency is enough to drive the

closed-loop system (with LQG controller) unstable. In order to evaluate the robust

controller designs, a specification was made to raise the stability margin to ± 10%, and

the resulting loss in performance was compared for four different methods:

Auxiliary inputs only:
(1) White noise (w.n.)

(2) Frequency-shaped noise (f.s.n.)
(3) Multiplicative white noise (m.w.n.)

Auxiliary outputs only:

(4) Auxiliary output penalty (aux. output)

Note that the term "stability margin", as used here and in the remainder of this thesis,

does not denote a gain or phase margin in the sense of classical control theory. Rather,

it is an abbreviation for parameter stability margin and represents the maximum

amount a parameter may deviate from its nominal (i.e., assumed) value without causing

system instability.

The natural frequency appears in both the A- and C-matrices, so methods (1),

(2), and (4) require that we factor both AA and AC to obtain [see (1.8)]:

Mo= 0j M =l, N.=Nc=[2.05 1 0 0 (6.13)

The natural frequency appears in matrix elements -w, 2 and - 2( 1w, in both A and C,

so it is impossible to find a relative scaling for the corresponding elements of AA and

AC that will hold for any size deviation of wl. For a +5% deviation in w1
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(or - 2(lwl), there is a + 2.05 x 5% deviation in w1
2 (or - w1

2 ). This 2.05 ratio very

nearly holds over the entire parameter range of interest, hence the values of N. and N,,

in (6.13).

In applying method (2), the noise shaping filter H.(s) was computed directly I
from equation (2.11), without a low-order approximation. The full-order shaping filter

did not raise the controller order excessively, because the original plant order was so 3
low. Also, due to the structure of the parameter uncertainties, the same noise shaping

filter was used for He(s), so no additional dynamics were necessary for that filter.

Therefore the controller order for method (2) was n = 8, as opposed to n, =4 for the

other methods. 3
The design parameters needed to just meet the ± 10% stability margin

specification are as follows: 3
(1) W hite noise ............................... Pa = c = 400

(2) Frequency-shaped noise ............. (scale H. and H, by a factor of 1100) 1
(3) Multiplicative white noise .......... . - .64,

0 [ 0g5 0 0J

c, [2.051 0 0]

(4) Auxiliary output penalty .......... p. p, = 600 I
Figure 6.2 shows the results of the performance/stability robustness tradeoff for

all four robust controllers, compared with the baseline LQG controller. Both frequency- 1
shaped noise and multiplicative white noise provided more suitable auxiliary input

models than the white noise of LQG/PRE, although the multiplicative white noise

design was clearly the best performer of the three. The auxiliary output penalty design

gave up the least performance of all in achieving the stability robustness objective. At

the nominal value of wl, that design, and the multiplicative white noise design, are

nearly optimal in performance.
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The experiment depicted in Figure 6.2 was based on the assumption of steady

state process noise - the premise of LQG optimal control. This comparison was I
repeated with an impulse applied at the process noise port [i.e. the signal v in (6.10)] in

order to simulate the effect of transient disturbances on the designs. The results are 3
shown in Figure 6.3. The LQG curve no longer represents optimality at zero parameter

deviation, rather it is only an approximation to optimality. In fact, designs (3) and (4) 3
both outperformed the LQG controller in the presence of an impulse disturbance. The

multiplicative white noise design performs relatively somewhat better when the

disturbance is an impulse, as was expected. The signal levels, and therefore the

auxiliary input amplitudes, vary greatly over the course of time, and the multiplicative

white noise model takes advantage of this. On the other hand, the finite-energy 3
disturbance input conflicts with the premise of the frequency~shaped noise design, and it

performs relatively worse. 3
B. Uncertainty in Eigenvector 3

In order to make the closed-loop system sensitive to the control input

eigenvector, %,, the sensor noise intensity parameter, p., was lowered to

p = 1/(4.9 x 109). That resulted in the same baseline stability margin as in the natural

frequency uncertainty problem just discussed. A +3% deviation in . (in the B,,-
matrix only) destabilized the closed-loop system with LQG controller. The matrix

DP= U was left unaltered for this study, because hardware experimentation showed

uncertainty in BP to be a particular problem. I
The control input eigenvector appears in the second row of the augmented B-

column vector, so the obvious choice of a factorization for AB was:

0I
Mb = Nb = 1 (6.14) I

The same stability margin specification was made as before - to improve that margin

to ± 10%. The following design parameters enabled the four robustness methods to I
meet that specification:
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(1) W hite noise ............................... Pb = 70

(2) Frequency-shaped noise ............. (scale Hb by a factor of .15)

(3) Multiplicative white noise .......... . - 1.44x 10-,01
B ° 1

(4) Auxiliary output penalty ........... Pb = 3.4 3
The steady state disturbance results for this problem are shown in Figure 6.4. 3

The auxiliary output penalty method, rather than being the most effective, was by far

the worst performer this time. Among the three auxiliary input models, multiplicative 3
white noise once again gave very good results, but provided no improvement over the

simple white noise model. Surprisingly, the frequency-shaped noise model led to a

somewhat greater sacrifice in performance than the white noise model.

Plots of the impulse response costs for this example are shown in Figure 6.5.
These results are not significantly different from those of the steady state disturbance

case. I

C. Results for Different Factorizations

Up to now, only the individual components of the parameter robustness methods I
under study have been compared. A logical procedure for choosing among LQG/PRE,

the frequency-domain method of Chapter 2, and the time-domain method of Chapter 3 3
is to determine the corresponding auxiliary input model that gives the best
performance, then to combine that auxiliary input model with the auxiliary output 3
penalty common to all three methods. Once a required stability margin has been

specified, the auxiliary input noise intensity (through P.,/ P, and P, - assuming we are

using LQG/PRE) and the auxiliary output penalty (through pa, Pb, and P) may be

applied individually or combined in any number of different proportions to just meet

the stability specification. For any single independent parameter uncertainty, adjusting
the relative magnitude of the p- and p-scalars is equivalent to choosing different

factorizations for AA, AB, and AC, giving the corresponding nonzero elements of either

the M- or the N-matrices a relatively greater magnitude. Of course, when more than
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one independent uncertainty is present, the factorizations must be adjusted in order to

exercise every degree of freedom available. Analysis of a few different factorizations

should reveal one that is very nearly the best possible for any given uncertainty.

I This technique was applied to the eigenvector uncertainty problem in section

6.2B. First, the white noise model was chosen for the auxiliary inputs, because of the

good performance that results and because of the simplicity of design. Then, holding

M b and Nb constant, the ± 10% stability margin was attained using several different

combinations of values for Pb and Pb. Those values are detailed in Table 6.2 for eight

different controller designs. The performance/stability results of each design are plotted

Table 6.2: Controller Design Parameters Corresponding to Eight Different Factorizations

Case Number

1 2 3 4 5 6 7 8

b 0 10 20 30 40 50 60 70

P6 3.4 0.9 0.5 0.3 0.15 0.1 0.05 0

in Figure 6.6, where the top curve represents Case 1, and the curve for each successive

decrease in nominal cost represents the next higher case number. These results are

typical of a those from a number of such experiments, including analysis of controllers

based on a multiplicative white noise model of the auxiliary inputs. Normally, either

the auxiliary input modeling or auxiliary output penalty alone provide virtually the best

overall performance possible, although neither one does so consistently. So far, no

significant improvement has been achieved by combining auxiliary inputs and outputs.

Blelloch and Mingori (1990) point out that one particular factorization has a
certain intuitive value for the problem of multiple natural frequency uncertainties

(actually for uncertainties in the - wi 2 elements of the A-matrix). Namely, by

factoring AA such that the nonzero elements of M. and N. are equal, the auxiliary

outputs lead to a penalty on the elastic strain energy of the flexible structure. However,3this approach to factoring AA has no bearing on the relative emphasis to be placed on

the auxiliary inputs versus the auxiliary outputs. It only decides what relative
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importance should be placed on the various parameter uncertainties. Also, no results
were given to draw comparisons with other factorizations.

I
6.3 It6 vs. Stratonovich Noise

I In the examples considered in the previous section, the multiplicative white noise
models were interpreted in the sense of It6. Recall from section 3.5 t 'at in order to
interpret multiplicative white noise as Stratonovich noise, we need only to make the
following substitutions in the controller design equations:

I A 4- A + EPtA 2  (3.73)
j=1

II B4-B+I.p Tii~

B 4 B + E -,CA,
i=1

The Stratonovich noise interpretation was applied to the natural frequency uncertainty

problem of section 6.2A (using auxiliary input modeling only) so as to compare the

controller performance with that of the It6 noise design already discussed. For a ± 10%

stability margin requirement, we have the following matrix substitutions for A and C:

A4- A + 1 f/,A, (6.15)

0 0 0 0
A +- A + 0.656 0.32 0 0

A40A+[ 0 0 0 0

0 0 0 0

where on the right-hand side of (6.15):

01 0 0 1IA = -96525 -4.7987 0 .70334
0 0 1

0 0 - 142120 -75.398
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and - C +1 - c,A, (6.16)

C 4- C +[.656 .32 0 01 1
where on the right-hand side of (6.16): 5

C = [ - 96525 - 4.7987 0 .70334 1
The stability specification was met with auxiliary input noise of such a low intensity

that the modifications to A and C were insignificant. The difference in the stability 1
and performance characteristics of the closed-loop systems for the two noise

interpretations was therefore not discernible. I

6.4 Reduced-Order Controller I
A much higher order model was used to investigate the benefits of optimal

reduced-order control. This study employed a 4-mode model of the plate, along with

the second-order smoothing filter and second-order disturbance shaping filter to create a

twelfth-order augmented plant. The design objectives for the reduced-order controllers I
were threefold: (1) to provide 15 dB of rejection at the assumed disturbance center

frequency (60 Hz), (2) to minimize the increase in the linear quadratic cost over that of 3
the full-order design, and (3) to provide some transient suppression along with the

steady state rejection. 3
The disturbance cancellation method of section 5.2 was found to provide over

15 dB of rejection at 60 Hz for a full-order controller. Combining 60 Hz cancellation 3
with a penalty on the modal energies supplied some transient suppression as well. The

cost functional matrices which resulted were similar to those used for the robustness

studies:

R= di.ag{ 2,,o0,0o,0110002}, R2 = , R12 : [ 00j (6.17) 3

where the 4 x 4 natural frequency matrix fl is defined in (6.3). As before the noise
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intensity parameter was chosen to be p, = 10'6. The simple model for 922 was used:

922 = I. Then V 1 , V 2 , and V 1 2 were computed from (6.12).

A full-order controller was designed for this model, then its performance,

frequency response, and time response characteristics were compared with optimal

controllers of orders 4, 3, and 2. Table 6.3 quantifies the comparative performance of

all four controllers.

Table 6.3: LQ Cost and Disturbance Rejection vs. Controller Order

Order 12 4 3 2

Rejection 15.9 dB 17.9 dB 14.8 dB 5.3 dB

LQ Cost 1576 1623 1633 2753

Approximately 15 dB of rejection at 60 Hz is retained for a controller order as low as 3,
and very little rejection is lost by substituting this 3rd-order controller for a 12th-order

controller. However, the 2 d-order controller is markedly worse in performance. Note

how the linear quadratic cost rises with each reduction in controller order. On the

transition from a 3rd-order to a 2a-order controller, the increase in cost is very steep.

Figure 6.7 shows the magnitude frequency responses of the first modal

acceleration to the disturbance shaker input for the open-loop system and three closed-

loop designs. The 3d-order controller appears to be the design of choice. We see here

how closely the closed-loop system behavior with this controller resembles that of the

system with full-order controller. When the controller order is restricted to less than
three, however, the optimality (in the full-order sense) of the design begins to break

down. All three controllers provide some transient suppression by lowering the open-

loop peak at 49 Hz due to the lightly damped first mode at that frequency. However,
the 2 ,d-order controller fails to produce a notch at the 60 Hz disturbance center
frequency. By subtracting the open-loop response from each of the closed-loop

responses, we arrive at the disturbance rejection plots in Figure 6.8. The vertical line is

drawn at 60 Hz to indicate where the 15 dB of rejection is desired. The 2 d-order

controller is not able to simultaneously dampen the first mode and provide good
rejection at 60 Hz. The frequency response plots of the controllers in Figure 6.9

95



Frequency Responses for Full- and Reduced-Order Compensators
40 .. .. ... ' I . 1. .... .. . .. 3

Open-Loop

20/

20- Closed-Loop:
. / -- 12th-order

S-40 - . 3rd-order

-6 
0 

2 h -o rd e r

1800 ' . . . . . . ... . . . . ..101 102 103 104

Frequency (Hz)

All
0 I

II

'UII

Figure 6.7: Frequency Responses for Full- and Reduced-Order Compensators

-60



m

Disturbance Rejection for Full- and Reduced-Order Compensators

-5-

-10 !

m -,12th-order

-15- 
3rd-order

-1 .. 2nd-order

-20 -:',

100 101 102 10a 104

Frequency (Hz)

I
a
I
I
I
I

I Figure 6.8: Disturbance Rejection for Full- and Reduced-Order Compensators

97

I



I
I

demonstrate the cause of this limitation. These curves represent the response of the

transfer function from the first modal acceleration input to the control output. The

response of the 2h-order controller can approach the full-order response only at the

asymptotes. The rapid change of the full-order response in the 49-60 Hz region cannot 3
be matched at the same time by a transfer function with only two poles. In order to

compare the time responses of the closed-loop system with 12th- and 3rd-order 3
controllers, a 60 Hz disturbance was applied and the first modal acceleration was

measured. These results are shown in Figure 6.10. Again, we see how little

performance is sacrificed to achieve this dramatic reduction in controller order.

II
I
I
I
I
I

I
I
I
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7. Application to Simply Supported Plate

7.1 Stability Robustness Problem and its Solution

I For experimentation with the simply supported plate hardware, a sinusoidal

60 Hz disturbance was applied at the disturbance shaker. When standard LQG

3 controllers were implemented, very little disturbance rejection could be accomplished.

Large controller authorities (in the form of a small penalty, R2, on the control input)

3 resulted in system instability due modeling errors of the plate. In order to determine

possible sources of the modeling errors, the control penalty was gradually lowered andIthe LQG controller was repeatedly redesigned until instability resulted. Then the

sensitivity of the model to deviations in its parameters was analyzed. The augmented

plant model from which the controllers were designed was the same 4-mode, 12th-order

II model described in section 6.4. The covariance matrices were also the same, with the

minor exception that 922 was computed as in (6.2), yielding a slightly different value for5' V2. In order to keep matters simple, direct 60 Hz disturbance cancellation was not
attempted. Rather, a penalty was applied to the control input and the modal energy of3the first mode only. The plant, cost, and covariance matrices were then translated to

zero-order hold equivalent form, and the LQG controllers were designed directly in

discrete-time. The following (continuous-time) cost functional matrices resulted inl
instability of the simply supported plate:

R1 = diag{w 1,,0,0,1,0,0,0,0,0,0,0}, R 2 = 2 x iO, R12 = 0 (7.1)

IContinuous-time analysis of the closed-loop system model with LQG controller

designed from these cost matrices revealed that the system was robust to all of the

- plate's damping ratios and modal frequencies except one. A -5% or a + 6% deviation

"- in the second natural frequency was found to destabilize the system model. The3i nominal natural frequency for the second mode (from Table 6.1) is approximately 109

Hz. Therefore, if the plant model were otherwise accurate and the actual second

natural frequency of the plate were anywhere outside the range 103.5-115.5 Hz,

_ instability would result. In order to correct this problem, a requirement was placed on

the stability margin with respect to W2 - to improve the margin to ± 10%. Three3 different modified LQG designs were applied to just meet this specification: (1) white

noise auxiliary input modeling, (2) multiplicative white noise input modeling, and
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(3) auxiliary output penalty. Since the simultaneous application of auxiliary inputs and

outputs was found in Chapter 6 to have little success, no combination of the two was I
attempted. Also, frequency-shaped auxiliary input noise was not considered, because of

its relative ineffectiveness during experimentation with the model and because it would I
result in a controller of order greater than twelve, meaning that the controller would be

too slow for implementation without using some kind of order reduction. 3
The factorization used to compensate for the natural frequency uncertainty is

analogous to the one used in section 6.2A. for the 1-mode model: 3
05 X 1 0

Ma=LO , M= 1 N -=No=[ 0 2.05 01X3 1 01,X6 (7.2)

06 x1 [0]

The design parameters that the three robust designs used to meet the ± 10% stability

margin requirement are: 5
(1) White noise ................. u = A, =.22

(2) Multiplicative white noise .......... . = 2.89, I
[ 05 x 12

A,= 0 2.05 0 0 0 1 01x6

06 x 12

C, 0 2.05 0 0 0 1 01x6

02 x 12

(3) Auxiliary output penalty ........... Pa = Pc = 7 x 10 I
The performance/stability tradeoff results for all three candidate designs is depicted in 3
Figure 7.1, along with the LQG results. Even though the white noise auxiliary input
model gave very poor nominal performance in the 1-mode natural frequency uncertainty 3
example of section 6.2A., that same method of robust design sacrificed virtually no

nominal performance here and was clearly the best performei overall. The

multiplicative white noise design did provide a larger stability margin for positive
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d( ations in W2, but the natural frequency is surely known to within 28%, so the

additional stability margin to + 34% is of no value. 3
The white noise auxiliary input model requires only that we make the following

two substitutions for the original covariance matrices:

V 4- V, + p.MoMoT (7.3) 3
V 2 4" V 2 + PMMc T

Then we use LQG to arrive at a different Kalman filter (but the same regulator gains).

This parameter robust controller design was implemented in the hardware and did in

fact stabilize the system. The measured time responses of mode 1 and mode 2

accelerations to the 60 Hz disturbance are shown in Figures 7.2 and 7.3, respectively.

After the loop was closed, the LQG controller rejected the response in mode 1, but only
temporarily, as mode 2 was driven unstable. The robust controller stabilized mode 2

(and the entire system) while giving up only a small amount of rejection in mode 1. 3
I

7.2 Effectiveness of Reduced-Order Controllers

Robust optimal controllers of orders 3 and 4 were designed using the same white
noise auxiliary input model and the same cost and covariance matrices used to design

the full-order robust controller discussed above. For this level of controller authority, 3
the iterative relaxation method of section 5.4 proved to be sufficient for solving the

optimal projection equations. Since a sampled-data version of the optimal projection

equations was not available, the reduced-order controllers were designed in continuous- £
time, then discretized by means of a bilinear transformation. The 3rd- and 4th-order

controllers significantly reduced the computational delay caused by the full-order I
controller, so the one-sample-interval delay was ignored on the first attempt. Then, in

each case, a second controller was designed based on a 2"d-order Pad6 approximation of

the delay. This time delay model raised the order of the augmented plant from 12 to

14. 3
The sample rates for all three controller orders are given in Table 7.1.

I
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Table 7.1: Sample Rates for Full- and Reduced-Order Controllers

Controller Order 12 4 3

I Sample Rate (Hz) 1997 3615 4023

IThe improvement of the reduced-order sample rates over that of the full-order design
was not as dramatic as one might expect, because the full-order controller was able to
take advantage of the structure of the modal state-space realization of the plant. It
exploited the sparseness of the block-diagonal system matrix and the sparseness of the

output matrix to speed up the Kalman filter considerably.

In order to examine the effect of computational time delay on control system3 performance, an unmodeled delay of one sample interval was introduced into the full-
order robust controller by preventing the Kalman filter from predicting one step ahead.
The delay did not cause instability, but controller performance suffered somewhat.

Figure 7.4 shows the comparative responses of the first mode to a 60 Hz disturbance for
full-order controllers with and without the time delay.

Even though continuous-time analysis predicted the 3Md-order controller would
stabilize the system, it did not, regardless of whether the computational delay was

modeled. The 4th-order controller stabilized the system only when the delay was

modeled, and in that case gave quite good performance. Again, a 60 Hz disturbance

I was applied to the plate, and the responses of modes 1 and 2 were measured. In Figures
7.5 and 7.6, these results are compared with those of the full-order controller. The

4thorder controller does give up a small anlount of disturbance rejection, but increases
the sample rate significantly. The significance of this experiment is its demonstration
that parameter robust and reduced-order control can be accomplished simultaneously to

stabilize a flexible structure and reject disturbances with minimal computational delay.
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8. Conclusions

As stated in the introduction, the objectives of this work were to compare a

number of different parameter robustness techniques based on the LQG/PRE error

model, to investigate the limitations on controller order reduction, and to evaluate the

I combined robust minimal order design.

8.1 Robustness

The few parameter robust control problems considered in Chapters 6 and 7 serve

as a counterexample to the proposition that any one of the robust design techniques

studied is consistently superior to the others. In fact, the white noise, multiplicative

white noise, and auxiliary output designs each provided the best performance for at

least one problem. The best performer in one case was found to be the worst performer,

by far, in another. Also, the frequency-shaped noise design proved to be a contender at

times. Therefore, no strong conclusions can be drawn on the basis of performance alone.

Although the combination of an auxiliary input and auxiliary output model

provides greater flexibility in the design, experience seems to indicate that only rarely is

any advantage gained from such a combination. Even then, the advantage appears to

I be very slight. This result is useful, since the elimination of this flexibility from the

design allows us to eliminate the complexity of choosing among an infinite number of

I MLN-factorizations for each parameter uncertainty. Excellent performance and

stability characteristics are attained consistently by choosing the better of the two

extremes - auxiliary inputs only or auxiliary outputs only. Assuming this

simplification, we may discuss the comparative merits of the time-domain method, the

frequency-domain method, and LQG/PRE in complete generality by considering the

three auxiliary input models and the auxiliary output model each on its own.

The multiplicative white noise model for the auxiliary inputs was the most

consistent of the four models in providing good performance for a specified stability

margin. Relative to the other models, this one tends to show added improvement when5 the signal amplitudes of the plant vary greatly over time, such as is the case when the

plant is subjected to transient disturbances. However, the performance provided by this

_* model was repeatedly matched or beaten by simpler models.
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The frequency-shaped noise model has not proven to be superior for any example

studied thus far. Although it has in some cases resulted in a controller with better 3
performance than one designed using a white noise model, the added design complexity
would seldom justify the small advantage this model might provide. The intent of 3
frequency shaping is to model the low and high frequency rolloff of the auxiliary input
frequency response. However, the frequency content of white noise outside the

passband of the system (which poorly models reality) is greatly attenuated and

apparently has no significant harmful effect. In the presence of transient disturbances,
the frequency-shaped noise model tends to impair performance, since its design relies on
the frequency spectrum of an assumed steady state disturbance.

The white noise auxiliary input model and the auxiliary output penalty eachI
yield poor performance in some cases. However, one or the other consistently provides

very good performance, and the simplicity of their associated controller design methods 3
has important advantages. Both models require only the modification of cost or
covariance matrices in a standard LQG design. Therefore, they do not require the
iterative design computations of the multiplicative white noise model, nor do they
increase controller order, as does the frequency-shaped noise model. The rapidity of

controller design allows more effort to be devoted to analysis, which is crucial when
there are multiple independent parameter uncertainties.

8.2 Controller Order 1
For a 12th-order augmented plant (14th-order with the computational delay

model) we were able to design a 3'-order controller in theory and a 4th-order controller 3
in practice without sacrificing a great deal of performance. Instead of determining the
minimal controller order that is practical by successively designing optimal controllers 3
of many different orders, we may examine the frequency response of the full-order

controller to find out what order a controller must have to display the significant

features of that response. That order serves as a good first iteration to the minimum
controller order desirable. The addition of more modes to the model would not tend to
raise the order of a controller necessary to provide a good response, because any I
additional modeled modes would necessarily be less dominant. This effect was
demonstrated by the addition of the 2nd-order computational delay model to the plant 3
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in Chapter 7. Not only did the minimum controller order fail to rise, it fell due to the

more precise modeling of the plant.

8.3 Parameter Robust Reduced-Order Design

The application of the optimal projection equations to the auxiliary input and

output models of LQG/PRE is new and proved to be very successful. Its application to

the LQG/PRE error model in general makes these methods of parameter robust

controller design much more powerful. The reduction in computational delay makes

active vibration control possible when it otherwise may not have been. Also, optimal

reduced-order design allows us to model more dynamics to give the controller a more

accurate picture of the plant, thus reducing another source of uncertainty - unmodeled

dynamics. The additional dynamics may include more disturbance modeling,
smoothing filter modeling, and time delay modeling. In the robust reduced-order design
of Chapter 7, the sacrifice in performance may have been reduced or eliminated by

giving up some of the improvement in sample rate in favor of modeling more high

frequency modes. This experiment was not carried out, because it would have required
rewiring of the smoothing filter, which was designed for a 4-mode model. However, the
4th-order robust controller as designed did stabilize the system and provide a significant

Iamount of disturbance rejection.

i
8.4 Directions for Further Study

3 The most conspicuous shortcoming of the design methods and algorithms
presented in this study is the lack of a method of designing optimal reduced-order and

multiplicative white noise based controllers directly in discrete-time. This deficiency
results in the introduction of two additional sources of error. Firstly, the design of an

* optimal continuous-time controller followed by the transformation of that controller into

a discrete-time equivalent is a suboptimal process. Secondly, for the continuous-time

design an approximation is necessary to create a finite-dimensional model of theIinevitable computational delay. In a continuous-time augmented plant model, the
computational delay is not only imperfectly modeled, it may also require the addition of

Ihigh order dynamics in order to be modeled adequately, particularly when the plant is

multi-input multi-output. The solution of the optimal reduced-order control problem

1113
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for sampled-data systems is of particular interest, since it would have widespreadI

application in LQG-based design.

I
U
I
I
I
I
I

I

I
U
I
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1.0 INTRODUCTIONI
I
* This investigation is concerned with effective state estimation of a system

driven by an unknown nonGaussian input with additive white Gaussian noise, and

observed by measurements containing feedthrough of the same nonGaussian input

and corrupted by additional white Gaussian noise. The motivation behind this

3 work is the problem of robust modal control of large, multiple input multiple

output (MIMO), heavily damped structures. The scope of the problem involves

system identification of the system parameters, optimal estimation of the system

3 states, and robust control of the heavily damped modes of the system. This

investigation will deal specifically with the state estimation portion of the problem.

3 In an earlier study [11, Kalman filter estimation techniques [2], [3] are

developed for a lightly damped, simply supported plate. The input forcing function

I is assumed to be narrowband Gaussian, which is adequately modeled by passing

white Gaussian noise through a linear, time-invariant filter. Thus, knowledge of

the power spectral density of the narrowband process is sufficient for the design of

3 an adequate estimator. Since the plant and measurement equations for this system

are linear, and the inputs and plant and measurement disturbances are Gaussian,

the Kalman filter will provide the optimum minimum mean-square error estimate
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of the system states [4].

I Although the Gaussian assumption for modeling many types of inputs and

noise processes is valid in a wide range of applications, in practice it may not be a

good assumption for some signal models. For instance, also considered in [1] are

3large, heavily damped structures modeled by a plant with complex modes. The

input to the plant is unknown, but its frequency characteristics are known and the

3input is always present. The signal model chosen to represent this input is a

stochastic FM signal, generated by frequency modulating a sinusoid with a

IGaussian process. This stochastic FM signal has a highly nonGaussian probability

density function. The power spectral density of a signal of this type appears

similar to that of a Gaussian narrowband signal. An estimator design based solely

on the power spectral density of a nonGaussian signal assumed to be a Gaussian

narrowband signal may provide very poor estimates.

IEstimation techniques need to be developed that can cope effectively with the

nonGaussian nature of certain signals. One such approach is the Gaussian sum

technique, developed by Alspach [6-8]. The density function of each nonGaussian

process of the system is approximated by a weighted sum of Gaussian density

functions. The conditional density of the state given the available measurement

3 sequence, necessary in the Kalman filter development, is updated using the

Gaussian sum approximations and Bayes' rule.

IA serious limitation in Alspach's approach is that the number of Gaussian

3terms used to approximate the density functions increases at each time iteration.

A modified approach is required to alleviate this limitation. A modified estimation

3 structure is developed based on an adaptive Kalman filter scheme first presented

by Magill [16], and extended by Moose [23]. Essentially, a parameter vector is used

Ito uniquely describe each Gaussian term in the estimator. The parameter vector is
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restricted to be randomly chosen from the same finite set of known values at each

Iiteration. By using a nonGaussian signal model in conjunction with the modified

formulation of the Gaussian sum estimator, the number of Gaussian terms at each

iteration of the estimator will be fixed, thereby avoiding the growing memory

3 problem.

The modified estimation algorithm is termed the modified Gaussian sum

3 adaptive filter and forms the basis for the nonGaussian state estimation in this

investigation. An algorithm similar to this one that does not make reference to the

I Gaussian sum characteristic is known in the literature as the parallel processing

algorithm [4], or the multiple model algorithm [5]. Both the Gaussian sum and

modified Gaussian sum algorithms have been implemented in a variety of

important engineering applications such as phase and frequency estimation [36],

geophysical field navigation [37], maneuvering target tracking [24], and specification

I of route widths for air traffic controllers [201.

Several contributions to the field of applied estimation theory are made from

this investigation. These include:

I
1. The development of a modified Gaussian sum algorithm with nongrowing

memory based on a nonGaussian signal model with a Gaussian sum

probability density function. Parameters from this model are used directly in

U the modified Gaussian sum adaptive filter structure.

2. A comparison between the Gaussian sum (GS) filter of [6] and the modified

1Gaussian sum (MGS) adaptive filter. The two are similar, but the comparison

shows the MGS adaptive filter to be a good improvement to the GS filter.

I
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3. An examination of a necessary condition for effective MGS estimation. This

Icondition provides a simple test to determine if the MGS adaptive filter will

3 work properly for a given system.

1 4. An alternate configuration of the MGS adaptive filter when the necessary

condition of 3 above is not met. This configuration is applied in several ways,

3 and each is evaluated on a performance basis.

U 5. Two methods of monitoring and updating key parameters of the MGS

3 adaptive filter. These allow the estimator to react to changes in the input

signal level which cause the signal to be nonstationary over long periods of

3 time.

U The dissertation begins with a literature review in Chapter 2. This chapter

covers previous work and applications in the areas of Gaussian sum estimation,

adaptive Kalman filtering, and nonGaussian estimation. Chapter 3 begins with the

3 development of the Gaussian sum estimator. Then, a detailed description of the

nonGaussian signal model and the alternate formulation of the Gaussian sum

3 density approximation is given. A curve fitting procedure used to find the initial

modified Gaussian sum parameter vector is outlined. The MGS adaptive filter is

developed for a general system and a simulation example is given. Several

3 differences between the MGS and GS algorithms are examined. Chapter 4

describes the modal system, the nonGaussian input model, and the MGS adaptive

3 filter based on this system. A simulation example using the MGS adaptive filter is

given and the results are compared to those produced from an augmented Kalman

I filter based on an augmented system model assuming a narrowband Gaussian input
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signal. A necessary condition for effective MGS estimation is derived. Alternate

U estimation procedures are developed to compensate for situations when this

condition is not met. Several configurations are simulated and their performance

results are analyzed and compared. Chapter 5 discusses two methods of monitoring

and updating key parameters of the MGS adaptive filter. Simulation results are

analyzed to investigate the performance of these methods. Finally, Chapter 6 gives

3 the conclusions and outlines suggested directions for future investigations.

I
U
I
U
I
I
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I

I

I
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2.0 PREVIOUS RESEARCH AND RELATED WORKI
I
g This chapter presents a review of the literature relevant to this investigation.

It begins with a discussion of the Gaussian sum estimation technique. Many

examples of its use in a wide range of applications are given. Next, an adaptive

Kalman filtering method is outlined along with several modifications. Several

examples of the various applications of this method are presented. Finally, an

overview of alternate nonGaussian filtering and its applications is discussed.

2.1 Gaussian Sum Estimation

An estimation technique, applicable to both linear systems with nonGaussian

I inputs and nonlinear systems with Gaussian inputs, has been developed by Alspach

i [6-8]. In the case of linear systems, the noise processes associated with the plant

and measurement are assumed known and nonGaussian. The probability density

3 function of each noise process is approximated by a Gaussian sum; that is, a

weighted sum of Gaussian density functions. The Gaussian sum approximation is

3 written as

U PRE~VIsROUS RMARC AND RELATED WORK
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PGs(X) = EajN[py,] (2.1.1)

where

M-ai = 1; ai _> 0 for i = 1, 2,..., M (2.1.2)

* and

U N[pi,?]- 1 e- 2 A) (2.1.3)

For sufficiently large M, any density function can be closely approximated by a

I Gaussian sum. As long as condition (2.1.2) holds, the Gaussian sum is always a

valid density function.

3 The basic filtering problem is to estimate the state xk of the system from the

current measurement sequence Zk = {z 1 , z2,. . ., z_, zk}. The "best" estimate i is

found by minimizing or maximizing a particular performance criterion, such as

3 minimizing the mean-square error between Xk and i.k In the Bayesian approach to

estimation, this requires the use of the a posteriori, or conditional, density function

p(xk I ZAjI

The Gaussian sum estimator [6-8] is briefly described here and is more fully

I developed in chapter 3. The density functions of the initial state, the plant noise

Uprocess, and measurement noise process are approximated by Gaussian sum

densities of the form of (2.1.1). These densities are then directly used to form the

3 conditional density function P(Xk I Zk) as a sum of Gaussian densities. An

unfortunate consequence of using these Gaussian sum densities is that the number

Iof Gaussian terms that forms P(Xk I Zk) increases at each stage of the estimator.

U PREVIOUS RESEARCH AND RELATED WORK 7
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This growing memory problem is a serious limitation in Alspach's development. In

I chapter 3, a nonGaussian signal model is developed and used in conjunction with a

modified Gaussian sum adaptive filter that avoids the growing memory problem.

Alspach has applied the Gaussian sum technique to a wide variety of

3 applications. In conjunction with Sorenson, he applies the technique to linear

systems with nonGaussian noise [7], and to nonlinear systems with Gaussian noise

3 [8]. In [9], [10], and with Scharf and Abiri in [11], he addresses the problem of

linear systems with Gaussian noise processes having unknown covariances. Joint

Iidentification, tracking, and prediction in a multi-target, multi-sensor environment

3 is considered in [13], and with LaGrotta in [12]. Alspach and Sorenson [14] use the

Gaussian sum technique in conjunction with proving the validity of the separation

3 theorem for linear, nonGaussian, optimal control problems. Alspach extends this

work in [15] to nonlinear systems. Here he does not use the separation theorem,

3 but certainty equivalence control instead, producing a suboptimal control algorithm

useful for off-line investigations.

Other researchers have used the Gaussian sum approach in their work. Tam

U and Moore [36] developed a Gaussian sum estimator using extended Kalman filters

in the problem of angle demodulation. Dmitriev and Shimelevich [37] applied the

technique in determining the coordinates of a moving vehicle from geophysical field

measurements. Sirisena and Brown [38] applied the algorithm to probabilistic and

U stochastic load flow problems. Namera and Stubberud [39] used the Gaussian sum

g approach in solving nonlinear fixed-point prediction problems. Gauvrit [40]

developed a Gaussian sum filter to track targets in clutter with unknown noise

3variances. Tanaka and Katayama [41] devised a robust Kalman filter that consists

of the Kalman filter plus MAP estimates of the selection parameters that specify

3 noises from the Gaussian sum densities. Their filter is actually a smoother applied

I PE~MOUS RESEARCH AND RELATED WORK
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to a linear system with Gaussian sum noises. Kitagawa [42] modeled sudden

changes of trend or seasonal components due to the structural changes of the

economic system by the presence of outliers by a nonGaussian model. He used

Gaussian sum approximations of the nonGaussian densities.

2.2 Adaptive Kalman Filtering

In a typical application, the various parameters that describe the system are

assumed to be known. Even if they are time-varying, the variation is assumed to

be known. The parameters are then used in the Kalman filter design as the true

model of the system. For many physical problems, the parameters may not be

known exactly or may change at unknown times. In such cases, it is highly

desirable to design the filter to be self-learning, so that it can adapt itself to the

particular situation at hand.

One solution to this problem was formulated first by Magill [16]. He

considered the problem of estimation of a Gaussian random process when some

parameters of the process are initially unknown and remain constant with time.

The parameters are assumed to come from a finite set of known values. The

optimal adaptive estimate is a weighted sum of conditional estimates, which are

formed by a bank of Kalman filters. Each Kalman filter is based on a particular

parameter set. The weighting coefficients are determined by a nonlinear function

of the measurement residuals of the filters. The measurement residual of the filter

possessing the parameter set that matches the actual set will have the smallest

expected value (typically, zero mean). The residuals of all the mismatched filters

will be biased. Under the Gaussian assumption, the probability of the matched

PREVIOUS RESFARCH AND RELATED WORK 9
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filter will be the largest among all the filters.

I Along similar lines, Ackerson and Fu [17] developed an adaptive state

estimator for a linear system operating in a switching environment. The noise

affecting the system comes from a group of Gaussian densities acting one at a time.

The transitions from one noise source to the next is determined by a Markov

transition probability matrix. This effort differed from that of Magill in that the

parameter set describing the noise source does not remain constant with time, but

is allowed to switch from one set to another at random intervals. The adaptive

estimator has the same growing memory problem as that of Alspach, and

consequently a suboptimal finite memory estimator was proposed.

Following Ackerson and Fu, Jaffer and Gupta [18] developed an adaptive

estimator with a fixed number of filters for the problem of signal estimation under

conditions of intermittent failure in the observations. Fujita and Fukao [19]

established the validity of the separation theorem for the problem of determining

an overall optimal control policy for a linear system with interrupted observations.

Bruckner, Scott, and Rea [20] extended the adaptive algorithm of [17] to the

switching of plant parameters in an air traffic control system.

A slightly different version of the adaptive filter was introduced by Moose [23].

He modeled the variations in the switching plant br switching environment by a

semi-Markov process. Briefly stated, a semi-Markov process is a probabilistic

system that makes its state transitions according to the transition probability

matrix of a conventional Markov process. However, the amount of time spent in

state i before the next transition to state j is a random variable [21], [22]. By

incorporating the semi-Markov statistics into the learning portion of the adaptive

filter, the problem of growing memory is completely eliminated.

This technique was successfully used by Moose and Wang [24] in the switching

PREVIOUS RESEARCH AM RELATED WORK 10
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plant problem. Other applications include: modeling large scale depth variations of

Isubmarines, Moose [25]; modeling accelerations of a maneuvering target in three-

dimensional space using spherical observations of noisy radar data, Gholson and

Moose [26]; incorporating a correlated acceleration model in an airborne target

3tracking system, Moose, VanLandingham, and McCabe [27]; passive underwater

tracking using polar coordinates, McCabe and Moose [28]; using the correlated

acceleration model in the passive underwater range tracking problem, Moose and

Dailey [29]; extending the algorithm to passive underwater depth tracking, Moose

S_ and Godiwala [30]; modeling unknown biases in measurement devices, Moose,

5 Sistanizadeh, and Skagfjord [31]; and incorporating a nonlinear system block in an

underwater tracking system which decouples the bearing and range estimators,

3 Moose [32].

Many others have contributed to the field of adaptive state estimation and

3 multiple model filtering. Tugnait and Haddad [331, [341 studied state estimation in

linear systems with random Markovian noise statistics. The noise comes from a

group of Gaussian distributions with different means and covariances. The

3 transitions are determined by an unknown Markov transition probability matrix.

Akashi and Kumamoto [35] devised an adaptive filter in which the overall estimate

is calculated using a relatively small number of individual conditional estimates

sampled at random from a larger set of individual conditional estimates.

I_ Maybeck and Suizu [46] and Tobin and Maybeck [47] used multiple model

3 filtering in the problem of accurately tracking the azimuth and elevation of a

highly maneuverable airborne target, using outputs from a forward-looking infrared

3 sensor as measurements. Blom and Bar-Shalom [48] described a method of timing

the merging of various individual filters in an adaptive estimator to overcome the

growing memory problem. Bar-Shalom, Chang, and Blom [49] used the multiple
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model filter in the problem of input estimation, providing estimates of the

Imagnitude and onset time of the input. Emre and Seo [50] presented a global

modeling approach to data association of multiple targets and maneuver

detection/estimation of single targets. These two problems are solved

simultaneously using system identification techniques, which leads to a multiple

model estimator with a finite number of terms.U

1 2.3 Alternate NonGaussian Filtering

U Several alternatives to the Gaussian sum and adaptive Kalman filter

3 algorithms have been proposed for systems containing nonGaussian inputs.

Masreliez [43] introduced an approximate nonGaussian filtering method for linear

3 systems. Instead of approximating the densities using Gaussian sums, he used a

nonlinear score function of the measurement residuals to produce the Kalman filter

equations. The technique works best however when only some of the random

3 -processes are nonGaussian, with the rest being Gaussian. Masreliez and Martin [44]

extend this approximate nonGaussian filtering method by applying an influence

1 function of min-max robustness theory to replace the previously used score

function. Tsai and Kurz [45] devised a robust Kalman filter based on an m-interval

I polynomial approximation method for unknown nonGaussian noise. As the score

g function of [43] is partitioned into m segments, each is better approximated with a

low-order polynomial function which is easier to implement and adapt to the

3 density function of the residual process.

Other robust estimation techniques are used by Kirlin and Moghaddamjoo for

3systems with unknown inputs and nonGaussian measurement errors. In [51] the

I PREVIOUS RESEARCH AND RELATED WORK 12
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input forcing function and measurement bias are estimated using a moving data

Iwindow median calculation. The plant and measurement noise covariances are

found using biweights and rank correlation. In [52] they discussed adaptive

estimation of unknown inputs and measurement noise covariance using a running

window curve-fitting algorithm. Estimation of the plant noise covariance is

accomplished using an independent technique, based on the residuals and a

! stochastic approximation method.

I
I
I
i
I
i
I
I
I

3
1
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3.0 NONGAUSSIAN ESTIMATIONI
I
3 This chapter discusses the mathematical details of the Gaussian sum approach

to nonGaussian signal estimation. It begins with an outline of Alspach's

I development of the Gaussian sum estimation technique [6-8]. A major problem

with this technique is indicated which necessitates a modified approach. Next, a

3detailed description of the nonGaussian signal model is given which leads to an

alternate formulation of the Gaussian sum density approximation. The initial

parameter vector describing the density approximation is found using a curve

3fitting procedure. A modified Gaussian sum adaptive filter is developed for a

general discrete-time system and a simulation example is given. Finally, key

I differences between the Gaussian sum and modified Gaussian sum algorithms are

examined.1

3.1 Gaussian Sum Estimation Technique
!

As previously stated in chapter 2, an estimation technique, applicable to both

3 linear systems with nonGaussian inputs and nonlinear systems with Gaussian

NONGAUSSIAN ESTIMATION 14
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inputs, has been developed by Alspach [6-81. The basic problem is to estimate the

Istate Xk of a discrete-time system from the current measurement sequence

g Zk = {Zl, z2,.. ., Zk-1, Zk}. The "best" or optimal estimate ik of the system state Xk

is chosen as that estimate which minimizes the mean-square error between Xk and

Xk" This results in the conditional mean estimate

3k = E[xk I Zk] = _0 xkP(xk I Zk) dxk (3.1.1)

I where p(xk I Zk) is the conditional density function of the state given the current

3measurement sequence.

The Gaussian sum estimator is developed by Alspach using the following

I system model

3 Xk = 'kXk-I + Wk-I (3.1.2)

5 Zk = HkXk + Vk (3.1.3)

3 where the initial state has a Gaussian sum density of the form

P(xO)N[p, P (3.1.4)

1Assume that the plant and measurement noise processes, Wk and Vk, are

g statistically independent, nonGaussian, white noise sequences with Gaussian sum

densities

P(Wk)= /k, N[wk,, Qk] (3.1.5)

i NONGAUSSIAN ESTIMATION 15
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and
i rk

3 p(vk) = yk,. N[Vk,.,R,, (3.1.6)
m=1

The key idea of Gaussian sum estimation is to use (3.1.4) - (3.1.6) in the

approximation of P(xk I Zk) as a sum of Gaussian densities. Using Bayes' rule, this

conditional density function can be determined recursively [7] from

P(Xk I Zk) = P(Xk I Zk..)P(zk IXk) (3.1.7)3 p(zk I Zkl)

3P(Xk I Zk-1.) = 00 P(Xk- 1 I Zk-..)P(Xk XI .l)dxk..l (3.1.8)

3/ where the normalizing constant p(zk I Zkl) in (3.1.7) is given by

i p(Zk I Zk1)= J0 P(Xk I Zk-)P(Zk I Xk)dZk (3.1.9)

The density p(zk I Xk) in (3.1.7) is determined by the measurement noise density

Ip(vk) of (3.1.6) and the measurement equation (3.1.3). Similarly, the density

P(Xk I Xk-1) in (3.1.8) is determined by the plant noise density p(w) of (3.1.5) and

the plant equation (3.1.2). Knowledge Of p(zk I xk), P(xk I xk-1), and the initial state

density p(xo) of (3.1.4) determines p(Xk I Zk) for all k. Alspach [6], [7] derives two

I additional theorems which axe briefly stated here. The measurement update

3theorem provides passage of P(Xk I Zk-1) to P(Xk I Zk), while the time update

theorem provides passage of P(xk I Zk) to p(xk+I I Zk).

Measurement Update Theorem

3 Suppose that the kth stage prediction density function is

I NONGAUSSIAN ESTIMATION 16
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1 4k
p(Xk I Zk-1) -ZakN ,,PI,] (3.1.10)

Then the kth stage filtering density is given by

P(Xk I Zk) = ZakN[k.,Pk.] (3.1.11)I 3=1

3 where the mean and covariance terms are found from the Kalman filter

measurement update equations

Pki= p'k, + Kki(zk - HkP'ki, - Vk,) (3.1.12)

Pki = [I - KkjHk]P'ki (3.1.13)

Pk.H (HkPkHk + Rkm) (3.1.14)

3 The filtering density (3.1.11) is the result of a double sum formed by the

product of the prediction density (3.1.10) and the measurement noise density

1(3.1.6). The double sum is rewritten as a single sum with upper summation limit

k = Ckrk (3.1.15)

produced by the product of upper summation limits (k of (3.1.10) and rk of (3.1.6).

I As a result, the number of terms of the filtering Gaussian sum density grows

g geometrically at each measurement update with a ratio equal to the number of

Gaussian sum terms of the measurement noise.

I The ak, term of (3.1.11) is found from
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where the index of summation j is defined asI
i= 1,.,

I j=i+(m-1)6k M=1 1...Irk

3 The Wk, term of (3.1.16) is the Gaussian probability density function

Wki = N[Hki'k + Vk,,,, HkP'kHk + Rkm] (3.1.17)

I with terms that are readily found from measurement update equations (3.1.12) and

p (3.1.14). The ak, term (3.1.16) is a nonlinear function of the current measurement

data, with its denominator acting as a scale factor so that the ctk, terms remain

3 bounded between 0 and 1 at each iteration.

3 Time Update Theorem

Given that the kth stage filtering density function is

4
P(Xk I Zk) Y2k , kjN[pk, Pkl] (3.1.18)

j=1

Then the kth stage prediction density is given by

k+1
p(Xk+1 I Zk) = a+i/N[pk+li k+li]  (3.1.19)

where the mean and covariance terms are found from the Kalman filter time

update equations

Pk+1i = tk+l k, + Wk, (3.1.20)
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Pk+1i = q'k+1Pkk+I + Qkn (3.1.21)

The prediction density (3.1.19) is the result of a double sum formed by the

product of the filtering density (3.1.18) and the plant noise density (3.1.5). The

3 double sum is rewritten as a single sum with upper summation limit

I+1 = Gqk (3.1.22)

I produced by the product of upper summation limits G of (3.1.18) and qk of (3.1.5).

As a result, the number of terms of the prediction Gaussian sum density grows

geometrically at each time update with a ratio equal to the number of Gaussian

3 sum terms of the plant noise.

The a,+j i term of (3.1.19) is found fromI
ak+1i = a~kf l kn (3.1.23)

3where the index of summation i is defined as

-j + (n - )k n

IAlspach's two theorems show that for the system defined by (3.1.2) - (3.1.6)

g the Gaussian sum form repeats itself from one stage to the next so that (3.1.10)

and (3.1.11) are the general forms for an arbitrary stage. The measurement update

3 equations (3.1.12) - (3.1.14) and time update equations (3.1.20) and (3.1.21)

comprise a bank of Kalman filters operating in parallel. Using the Gaussian sum

3 approximation of the conditional density function (3.1.11), the overall state
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estimate ik is found as a weighted sum of the individual conditional mean values

3from each filter

Ik = E[Xk I Zk]= Z p k i (3.1.24)
j=1

The corresponding conditional covariance is

Pk = E[(xk - k)(Xk - )T I Zk] = ak[Pkj + (4k- Akj)(ek- i k,)] (3.1.25)Rj=1

It is evident from (3.1.15) and (3.1.22) that the number of Gaussian terms

increases at each stage of the estimator. This growing memory problem is a serious

5 limitation in Alspach's development. A modified approach is required to alleviate

this limitation.S

1 3.2 NonGaussian Signal Model Development

1Let u be a random noise process or random input signal with a nonGaussian

3 density function. It can be modeled as the sum of two statistically independent

random processesI
u = b + n (3.2.1)

The first term, b, is a semi-Markov process with state transitions governed by the

transition probability matrix of a conventional Markov process. Markov processes

3have the property that a transition is made at every time instant. The transition
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may return the process to the state it previously occupied, but a transition occurs

Inevertheless. However, in the semi-Markov case, the amount of time between

transitions is a random variable [22]. The value of b is randomly selected from a

fixed set of discrete values, characterized by a delta probability density function

I M
p(b) = P,i (b - b,) (3.2.2)

with

M
-Pi= 1; Pi>O for i= 1,2,...,M (3.2.3)

i=1

I This process can be thought of as a randomly-switching bias, each bias value bi

having probability Pi.

The second term, n, is a zero mean white Gaussian process with variance a..

With both densities known, the density function of u can be found using the

I convolution relationship between u, n, and b [53]

p(u)= fJ-0p.(u - b)pb(b)db (3.2.4)

where pn(u - b) is the Gaussian density with n = u - b

i p(u - b) = 2 e-O --2 (3.2.5)

3Substituting (3.2.2) and (3.2.5) into the convolution integral (3.2.4) gives

0 e u- b (b - bi)db (3.2.6)
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Interchanging integration and summation

=(U PM [f 602io, (b - bid](3.2.7)

Using the sifting property of the delta function [54]

3 f(a) = J f(x)b(x - a)dx (3.2.8)

the integral of (3.2.7) is evaluated as

s-ib
p(u) =i=Pi 1 e- (3.2.9)

I
or!

p(u) = ZPN[b,, ] (3.2.10)

IThus, the nonGaussian density function of u can be modeled as a Gaussian sum.

The weight Pi of each Gaussian term is the probability of the & bias term. The

5 bias term bi is restricted to be randomly selected from the same fixed set of bias

values at each iteration. Using this model in conjunction with the modified

i Gaussian sum adaptive filter developed in the next section avoids the growing

g memory problem of Alspach's development.

Selecting the parameters Pi, bi, and Oa in (3.2.10) to obtain the "best"

3 approximation PGS to some actual nonGaussian density function PA is

accomplished by means of minimizing the Lk norm

E
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PA - PGs[ f -0 1PA(U) Pi N[bi,, 2] du (3.2.11)
I

-00 A

This curve fitting exercise can be done off-line using several values of M until a

suitable trade-off between minimum norm and minimum M is obtained. Alspach

5[6], [7] performed this curve fitting procedure using L1 and L' norms for a uniform

density and a Gamma density. It was found that minimizing the L' norm resulted

3 in many fewer terms in the Gaussian sum and a considerably better looking

approximation for both densities compared to minimizing the L1 norm.

Il Figure 1 compares a Gamma density with a four-term Gaussian sum density

approximation minimizing the L' norm. The Gaussian sum curve is shown to fit

the Gamma curve reasonably well. The Gamma density used is

I~ 3-u
*ue u>O=(U 0 6 (3.2.12)

Each term of the Gaussian sum has a fixed value of an = 1. Table 1 lists the

values of Pi and bi used in the Gaussian sum.

Table 1.

Gaussian sum Pi, bi values, an 1.

I i Pj bi

3 1 0.081 2.537

2 0.432 2.553

3 0.356 4.555

4 0.131 6.933

I
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Figure 1. Gamma and Gaussian sum probability density functions.
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3.3 Modified Gaussian Sum Adaptive Filtering

A modified Gaussian sum adaptive filter is now developed for a linear system

with a deterministic input signal and nonGaussian plant and measurement noise.

The system is modeled in standard discrete-time state-space form as

Xk+1 "= Xk + rUk + IWk (3.3.1)

Wk = ak + Mk (3.3.2)

I Zk = Hxk + Vk (3.3.3)

Vk = bk + nk (3.3.4)

where Xk+1 is the state vector

Uk is a known deterministic input

Wk is the vector Gaussian sum signal model of the actual

nonGaussian plant noise process, comprised of semi-

IMarkov bias vector ak, and zero mean white Gaussian

noise m k with covariance Q

zk is the measurement vector

* vk is the vector Gaussian sum signal model of the actual

nonGaussian measurement noise process, comprised of

Isemi-Markov bias vector bk, and zero mean white Gaussian

3 noise nk with covarianc? R

4I, r, T, H are the respective constant transition matrices

and the random quantities Xk, ak, ink, bk, nk are assumed to be mutually

3 statistically independent.
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The optimal estimate 4'+1 of the state vector is found by minimizing the

I mean-square error between Xk+1 and ik+I. This results in the conditional mean

i estimate

I k+1 = E[Xk+l I Zk+1] f Xk+P(Xk+l I Zk+1) dxk+l (3.3.5)

where Zk+I is the current measurement sequence {ZlZ 2 ,...,Zk+1 }. The conditional

density function of (3.3.5) can be written as the ratio of the corresponding joint and

marginal densities

I Zk P(Xk+l' Zk+) (3.3.6)P(Xkll~kl)= P(Zk+I)

The two bias vectors a and b are explicitly brought into (3.3.6) by considering the

joint density P(Xk+l, Zk+l) to be a marginal density found from

p(xk+l, Zk+,, a = ai, b = bj) by summing over the a and b terms

N M

ZZP(k+, Zk+l, a = ai, b = b,)

P(Xk+, I Zk+I) = i=1 j=1 P(Zk+l) (3.3.7)

Expanding (3.3.7) and using P(Xk+l, Zk+l, ai, b,) as shorthand for

p(Xk+l,Zk+l,a = ai, b = bi) gives

ZP(Xk+I I Zk+laibj )P(Zk+labi)

p(Xk+I I Zk+l) = p(Zk+)
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N M

E E P(Xk+, I Zk+ ,aib)p(a,,b zk+I)p(Zk+,)
p(xk+1 I Zk+1) - i=1 j=1

and finally

p(xk+, I z+1)= Z p(k+l I Zk+1, aibj)p(aibjIZk+,) (3.3.8)
I j=

Substituting (3.3.8) into the conditional mean (3.3.5) results in

J "- Xk+{ F.P(Xk+IlZk+l,a,,bj)p(ai,bjlZk+I dxk+l (3.3.9)-0 i =1 j=l

Interchanging integration and summation gives

E Ek+l [f - [ k+P(X+l I Zk+,a, b) dxk+j p(ai, bj I Zk+) (3.3.10)
i=1 j=l -01

The bracketed integral in (3.3.10) is the conditional mean estimate of Xk+ 1 given

that a = ai and b = bj, denoted by

00k+(Xl

ik+ I fXk+P(X +l I Zk+l,a, bj) dXk+l (3.3.11)

In effect, +l represents the estimate for the ijth density combination from the

two Gaussian sums. A set of N x M (NM) estimators is needed to provide all the

individual 4+1 estimates. The overall estimate from (3.3.10) and (3.3.11),

N M.I ,+l = E Ei'+jp(ai, bi I Zk+) (3.3.12)

I 3=1 jT=2
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is a weighted sum of the NM individual estimates. The weighting factor

I p(a,,b IZk+1 ) is the probability that a = a, and b = bj given the current

measurement sequence.

Each estimate (3.3.11) is found from a modified linear state estimator.

Rewriting the measurement sequence as Zk+I = { Zk+l}, the conditional density

function of (3.3.11) is

P(Xk+l Zk, zk+l,aj,b j) = p(Xk+lZk, k+l, aj,bj) (3.3.13)
P(Zk, Zk+l,a,b,)

Expanding as before gives

p(xk+l I Zk, zk+l, aj, bj) = P(Zk+l I -k+l' a , bj,,Zk)p(Xk+l I aj) bj, Zk) (3.3.14)

The first term of the numerator of (3.3.14) is Gaussian since xk+ , a = a;, and

b = bj are given. The conditional mean value is found by first combining (3.3.3)

and (3.3.4) at time iteration k+l

Zk+1 = Hxk+l + bk+l + nk+l (3.3.15)

and then taking the expected value

ml+l - E[Zk+l I Xk+, aj, bj, Zk] = Hxk+l + bi + E[nk+l xk+l, aj, bj, Zk]

Since nk+l has a mean value of zero, the expected value is

mJ+ = Hxk+l + bj (3.3.16)
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The conditional covariance is found next asI
C;+j = E[(zk+l - mkJ+l)(Zk+l - mk,+l)TIxk+l, ai, bi, Zk]

= E[(Hxk+l + bk+l + nk+l - Hxk+l - bj)(zk+l - mk'+l)T Xk+, ai, bj, Zk]

I Knowing that b = b

IC ,I+ = E[nk+lnk+l I xk+, ai, bj, Zk] = R (3.3.17)

i The conditional density is therefore

p(zk+, I Xk+, ai, bi, Zk) = N[mk'+,, R] = N[Hxk+, + bi, R] (3.3.18)

_ The second term of the numerator of (3.3.14) is also Gaussian since a = ai and

-b = bi are given. The conditional mean value is found by first combining (3.3.1)

and (3.3.2)

Xk+ 1 = IXk + FUk + 'ak + 4'mk (3.3.19)

and then taking the expected value

Yx+l = E[Xk+l I a,,bi, ZAj = (E[xk I a,,b,ZkI + rUk + Ta, + IE[mk I a,,bi, Zk]

Since Mk has a mean value of zero, the expected value is
mX zer , +rk+%

I+ = I+ r + ='a, (3.3.20)
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where " kJ+l is the prediction at time iteration k+1 given prior measurements up to

only iteration k, while 4,3j is the previous estimate at iteration k given

measurements up to iteration k.

The conditional covariance is found next as

Mk+1 = E[(Xk+l - - IkJ+,) Iaj, bi, Zk]

= E[(xk + ruk + %kak + Imk - b'- - tj,)(xk+I - + a,, b, Zk]

I Since a = ai and recalling that Xk and mk are statistically independent

I = E[(Xk - XJ)(Xk - I a,, bi, Zk]OT + 'P'E[mkM I a,,b, Z]%FT

Letting PkJ = E[(Xk - 'j)(Xk k- j a, b, Zk] be the conditional covariance of the

error term xk - J,

I = p T +k .QtkT (3.3.21)

Since the covariances Q and R are the same for each ijth estimator, the respective

conditional covaiances Simplify to Pkj = Pk and Mik'+ = Mk+I, and the conditional

density is therefore

I P(xk+ I aibj,'Zk) = N[Y,+I' Mk+I] = N[4tik + ruk + *ai, PkT + kO1 T] (3.3.22)

The least-mean-square (LMS) estimator is found by taking the derivative of

the natural logarithm of (3.3.14) with respect to Xk+l, setting the result equal to

zero, and determining the value of xk+1 = 4i'+, that produces this result. Since the
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denominator term of (3.3.14) does not depend on Xk+1, it will not play a role in

I determining i4k+,. Now, set

I [ik+1[n P(Xk+l iZ Zk+, aj, b)] = 0 (3.3.23)

U
Using (3.3.18) and (3.3.22) in (3.3.14), (3.3.23) becomes

0 l[In N[mJ+I, RI + In N[ "+I, Mk+I]- 01 = 0
OXk+l

-~+[(1-- mP- ib ~ l) MikTt~l(xk+ -- 3 ' l)

mk+l)TR-l(Zk+l -m-+l) -k1  -*kl = -0
(3.3.24)

Combining (3.3.16) and using a rule of matrix differentiation (if C = CT)

I -"Ax + b)TC(Ax + b) = 2ATC(Ax + b) (3.3.25)

I the first term of (3.3.24) is arranged in the form of (3.3.25)

a [+1[-(2-HXk+l + Zk+1 - bj)TR-l(-Hxk+l + Zk+1 - bj)]II
with A = -H, b = zk+ 1 - bj, and C = R -1. Applying (3.3.25) results in

-HTR-d(Hxk+l - zk+ 1 + bj) (3.3.26)

Similarly, the second term of the derivative (3.2.24) is

I -Mk-(+ 1 - "X+) (3.3.27)
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Combining (3.3.20), (3.3.26), and (3.3.27) and setting xz,. = x k+l gives

-HTRk(H1+ -z++ b g- ves

-H TR(H - Zk+ + b) - Mk-+l(k+l -- Uk - %Pa,) - 0

or

(Mk 1 + HTR-H)J+l = HTR-I(zk+l-bj) + M' 1 ('h4j + ruk + PaiX3.3.28)1
i Now, define

IkP = (M- 11 + HTR-1H) (3.3.29)

i Using (3.3.29) and solving for ik'+, in (3.3.28) gives

ilk'+, = Pk+IHTR-'(zk+l - bj) + Pk+IM-'.(4'kj + ruk + 4-a,) (3.3.30)

To rewrite Pk+lM-+, first premultiply (3.3.29) by Pk+1, giving the identity matrix

1- I = Pk4.1(M;41 1 + (H T RlH) (3.3.31)

then solve (3.3.31) for Pk+lM-+. and substitute into (3.3.30)

x4, = Pk+IHTR-(zZk+, - bj) + (I - P,+ 1HTR-1H)(ti j + FUk + Ta,) (3.3.32)

Now, let

Kk+l = Pk+lHTR -1  (3.3.33)
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be the Kalman gain, and rearrange using (3.3.29) to produce

IKk+l = (Mk+l + Hl1RHT- )HTR-1

= Mk+IH TR + H- 1

= (Mk+lHT(R- 1 + HT1 M4 1 H1)

or

1Kk+I Mk+IH T(HMk+lH T + R)-1 (3.3.34)

I Substituting (3.3.33) into (3.3.32) and rearranging produces the familiar Kalman

filter equation below, with modifications to allow for the two bias terms of the

Gaussian sum densities

I i3+= .x ,k+ rUk + Pa + Kk+l[zk+l -b-- H(ti'k+ rUk + Iaji] (3.3.35)

As a final step, substitute (3.3.33) into (3.3.31) to produce

I Pk+lM;?~l = (I - Kk+lH)

or

I k+j = (I - Kk+lH)Mk+l (3.3.36)

I With the individual ijth estimate (3.3.35) determined, the next step in

I producing the overall estimate (3.3.12) is to find the weighting term p(a, bi I Zk+l).

Using Zk+I = {Zk, Zk+1} again, the weighting term becomes

Ip(ai,,bi I Zk+l) = p(zk+1 , a,bigkI P(Zk+l, Zk)
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Using Bayes' theorem produces

p(a,,bi I Zk+I) = P(zk+I I a,b, Zk)p(a,,b, I Zk) (3337)
p(zk+I I Zk)

3 The first term of the numerator can be modeled as a Gaussian density if the

bias terms switch slowly compared to the time interval k. This assumption will be

3 made here and has been validated by extensive simulation and analysis by Moose

and Wang [24]. Combining (3.3.15) and (3.3.19), zk+l is written as

I Zk+I = H(4 xk + rUk + Iak + 'I'mk) + bk+l + nk+i (3.3.38)

I Taking the expected value, the conditional mean is

I "'+, = E[zk+l I aj, b3 , Zk]

or = HkE[xk I aj, bi, Zk] + Hruk + H'Paj + bi

3 -+, = H()ikj + rut + Ta,) + b, (3.3.39)

3 The conditional covariance is found next as

I R',+ = E[(zk+l- 41j )(,k+l "i),, bj,Zk (3.3.40)

Using (3.3.38) and (3.3.39), the Zk+I - Zk"+ term is written as

I
Zk+1 - ze+. = H(,txk + rUk + ' Iak + %kmk) + bk+l + nk+i - H(4P-kj + ruAk + 'Pa,) - bi

I (3.3.41)

I NONGAUSSIAN ESTIMATION 34

I



U
U

Inserting (3.3.41) into (3.3.40) gives

Rk"+j = E[(H{f'(Xk - 4j) + nkMk} + nk+l)(Zk+ - a,, bi, Zk]

1 and using (3.3.17) and (3.3.21) produces

3R J+j = HM4+IHT + R (3.3.42)

I Since the covariances R and Mk'+l = Mk+ 1 are the same for each jth estimator, the

conditional covariance simplifies to Rk+, = Rk+l, and the conditional density is

therefore

I
p(zk+, Ia,,b,,Zk)= N[-+,,Rk+1U = N[H(,'M i + rUk + 'Ia,) + b, HMk+,H T + RI (3.3.43)

1 The second term of the numerator of (3.3.37) can be rewritten to explicitly

include the time interval for the two bias terms

p(aib, I Zk) = p(ak+1 = ai, bk+; = bi I Zk) (3.3.44)

IUsing Bayes' theorem and the definition of marginal densities, (3.3.44) is expanded

3into

- p(ak+l = ai'ak = a.7bk+l=b,,bk "= bo Zk)3- p(a, b I Zk) = = p(Zk)

N MI: _p(ak+i = ai, b+=, bj ak = a., b = bc, Z k)p(ak = a., b o=b0 , Zk) (3.3.45)
0=1 0=1 ~klkb k
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Recalling that ak+1 and bk+l are assumed statistically independent, and given that

Zk, ak = a,, and bk = bp are known, (3.3.45) becomesI
N M

E E p(ak+l = ai ak = a.)p(bk+l = b3j Ibk = bo)p(ak = a., bk = b3 I Zk) (3.3.46)

The measurement sequence Zk is not needed in the first two terms of (3.3.46) since

Iak = a. and bk = bo axe known at time interval k and are independent of Zk. The

following notation will be used to express the three terms of the summation
[ (3.3.46)

S a = p(a+l = a a a.) (3.3.47)

O =p(bk+l = bj bk bo) (3.3.48)

Wk pak = a, bk = b# I Zk) (3.3.49)

The terms (3.3.47) and (3.3.48) are Markov transition probabilities [22]; that

is, 0"' is the conditional probability that a = ai at time interval k+1, given that

a = a. at time interval k. The 0113 term is similarly defined. The term (3.3.49) is

of the same form as (3.3.37) and is just the previous weighting term at the previous

time interval k.

The denominator term of (3.3.37) is independent of ij. Therefore it is the

same for each ij t h estimator and becomes a scale factor.

Combining (3.3.43) and (3.3.47) - (3.3.49), the weighting term (3.3.37) is

written as

wI + = p(ai,bjlZk+l) = C' ,N[I-,,Rk+I E Z 0 9'0jw- (3.3.50)
o0=l 0=1
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where C'+1 is a scale factor determined at each time interval such that

N M

E wVj+I = 1 (3.3.51)

3 guaranteeing that the sum of all the weighting terms (3.3.50) is equal to one. The

mean and covariance of the Gaussian density function are available from the

3 Kalman filter equation (3.3.35) and Kalman gain (3.3.34).

The equations for the modified Gaussian sum adaptive filter for the system of

(3.3.1) - (3.3.4) are summarized in Table 2. The structure of the overall adaptive

3 filter is a bank of Kalman filters operating in parallel, with each individual

estimate multiplied by its own corresponding weighting term. The ijth estimator

3 based on the bias terms that most closely matches the actual bias terms of the

modeled system will have a corresponding weighting term that tends closer to one,

I while the weights of the other mismatched estimators will tend towards zero. A

block diagram of the adaptive filter is shown in Figure 2.

A simulation example is presented in the following section.

I
I

I
I

I
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Table 2.

I Modified Gaussian sum adaptive filter equations.

3 System: Xk+ = 41Xk + IFUk + WWk

~~Wk = a k +-} M k

Zk = Hxk + Vk

-- Vk = bk + nk

N MI Overall estimate: ik+I = Z kZ+jp(a, bi I Zk+l)
i=1 j=l

Kalman filter equation:I ~l= 4¢k- + rUk + %a, + Kk+lz+l - b - H(Wi? + rUk + Ta,)]

Kalman gain equations: Mk+l = '4PkpT + !QiT

Kk+l = Mk+lHT(HMk+lHT + R)-1

Pk+1 = (I - Kk+IH)Mk+l

Weighting term:~N M

wJ+l = p(a,,bi I Zk+1) = Co+lp(zk+l I a,,bi,Zk) E 9 PoW? V
a=1 3=1

U with p(zk+ I a,,b, ,Zk) = N[H(4 i + rUk + $a,) + bi, HMk+lH T + R]

-a0 = p(ak+l=aI ak = a)

Oi= p(b,+l = bi I bk = bo)

3 wk/ =p(ak = a., bk= boI Zk)

N M

and scale factor C+ such that wk+1 =1
i1=1 j=l
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I Figure 2. Modified Gaussian sum adaptive filter structure.
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3.4 Simulation Example

3 An example illustrating the modified Gaussian sum estimation technique is

now presented. A first-order system is used, modeled by the following discrete-

1 time equations

plant: Xk+I = e-'Txk + (1 - e-T)Uk + (1 - eT)(3.4.1)Ia Wj 3..1

wk = ak + mk (3.4.2)

3 measurement: Zk = Xk + Vk (3.4.3)

Vk = bk + nk (3.4.4)

I
The value of a is 0.6 and the sample time T = 1 second. For simplicity, let

Ithe plant noise (3.4.2) be zero mean white Gaussian with variance Q = 1.0.

Therefore, the randomly-switching plant bias term ak = 0. The actual

measurement noise, modeled by (3.4.4), has the Gamma density of (3.2.12), with a

3mean and variance of 4. The measurement bias term bk can be randomly selected

from the last three bias terms of Table 1, {2.553, 4.555, 6.933}. The first bias term

3 of Table 1, {2.537}, is not used since it is so close in value to the second bias term.

The measurement model noise term nk is zero mean white Gaussian with variance

I R = 1.0. A deterministic input of Uk = 10 is used throughout the simulation.

Figure 3a shows the measurement and state sequences. Note how the measurement

is centered about 14, indicating a mean value for the Gamma density of 4.

* The filter is initialized with equally-valued weighting terms

3 w= : , for j =1,2,3 (3.4.5)
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A Markov transition probability matrix O , consisting of OO elements, is

I configured with a high probability that the bias term does not switch from one

3 value to another, and a low probability that the bias term does switch, such as

.95 .025 .025

3 j= .025 .95 .025 (3.4.6)

.025 .025 .95

The initial value of the state and state estimate is x0 = 30 = 20, and the initial

value of the variance of the error Xk+I - k+I is P. = 100. The overall state

estimate and the state are shown in Figure 3b, with the error and overall state

estimate shown in Figure 3c. Note how the error appears to be zero mean, thus

showing that the MGS adaptive filter removes the bias effect of the nonzero mean

Gamma measurement noise.

Figures 4a, b, and c show the weighting terms for each of the bk bias terms. In

order to lessen the noise of the weighting terms, a first-order lowpass filter

WI+ 1 = Awj + (1 - A)wj+1  (3.4.7)

is used to smooth the weighting terms, where A = 0.7. Figure 4d can be thought of

as the overall measurement bias estimate bk due to the nonzero mean Gamma

measurement noise. Using (3.3.35) and (3.3.50), this overall bias estimate is part of

the overall state estimate (3.3.12) and is written in this case with ak = 0 as

M
bk = w +b (3.4.8)

Note how this overall bias estimate approximately models the mean value of 4 of

the Gamma measurement noise.
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Figure 3. (a) Measurement and state simulation, (b) modified Gaussian sum

estimate compared with state, (c) error = state - estimate.
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Figure 4. (a) Weight 1, (b) weight 2, (c) weight 3,

(d) overall measurement bias estimate.
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3.5 Comparison of Gaussian Sum and Modified Gaussian

*Sum Algorithms

I The Gaussian sum (GS) algorithm of Alspach [6], [7] and the modified

3 Gaussian sum (MGS) algorithm developed in this present work exhibit several

similarities. Among them are using a Gaussian sum density approximation to

3model the actual nonGaussian densities, a structure formed by a bank of Kalman

filters operating in parallel, and weighting terms that are nonlinear functions of the

Imeasurement data. However, there are several key differences between the two

3algorithms that set them apart.

One difference is that the GS algorithm produces an exponentially increasing

number of Gaussian terms at each iteration, while the MGS algorithm produces

only a fixed number of Gaussian terms. As a result, the GS algorithm requires an

I exponentially increasing number of individual Kalman filters operating in parallel,

which is impossible to implement for any practical purpose. The MGS algorithm

avoids the increasing computational and storage requirements of the GS algorithm.

3 This leads to a second difference between the two. The GS algorithm is

optimal while the MGS algorithm is suboptimal. Tugnait [55] and Raisch [56]

point out that in order for the state estimate

N M

ik+l = E[xk+l I Zk+I] = E E ZX41p(a,,bjIZk+, ) (3.5.1)
i=1 j=1

to be optimal, the full exponentially increasing number of individual Kalman filters

3 is required. This leads, in turn, to the condition that the individual ijth estimate

U = J: k+P(Xk+l I Zk. 1,a,,b,) dxL.+I (3.5.2)
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is optimal only if the density p(Xk+1 I Zk+,a,, bj) is conditioned on the full

I measurement sequence Zk+l = {z1z 2 .. ., Zk+l} and the full switching-parameter

bias term sequences Ak+1 = {a 1,a 2,.. .,ak+1}i and BL+ 1 = {bI,b 2,. .. ,bk+l} j of present

and past bias values for this particular ijth estimate. Therefore, (3.5.2) would be

3 written as

kij'l k (3.5.3)

" f Xk+IP(lk+l I Zk+I, A'+ 1, Bj+1 ) dXk+l

Iand the overall state estimate (3.5.1) would be

3Nk+lMk+l
k..- = x ' J+p p(A'+1 ,Bj+1 I Zk+,) (3.5.4)I a=1 j=l

The weighting term p(A+, Bj+1 I Zk+l) is also now a function of the full bias term

3sequences. The upper limits on the summations are no longer fixed constants, but

are now functions of the time iteration. At each iteration, a is randomly selected

I from a fixed set of N discrete values. This produces Nk+I possible A'+1 sequences

3 at iteration k+1, with i running from 1,2,...,Nk+l. Similarly, b is randomly

selected from a fixed set of M discrete values, producing Mk+i possible B+ 1

sequences, with j running from 1,2,..., Mk+1.

Rewriting the measurement sequence as Zk+I = {Zk+1, Zk}, and the bias termI sequences as = {a + ,A} and Bj+, = {bL+,BL}, the density of (3.5.3) is

3 expanded as

p(zk+ 1 I zk'lZk ak "Aj NIN 2 N3N 4  (3.5.5)
+ , D 1D 2 D3

* where
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N1 = p(zk+I Xk+l,ak+IA',bj+l,Bi,Zk)

U N 2 = p(ak+I Xk+Iln,bj+lBi,

N 3 = p(bj+j xk+l ,A,B L,Zk)
N 4 = P(Xk+1 A, Bi,Zk)

3, = P(Zk+1 akI, ,A',bj+l,Bi,Zk)

D2 = p(ak+, A', b+, B, Zk)

3 3 = p(bj+A, Bi, Zk)

I The N 2 term can be reduced to the Markov transition probability N 2 = p(a+l a)

5since the A},+, is a semi-Markov sequence. The N 3, D 2 , and D 3 can be reduced in

a similar fashion, producingI
N2 = p(ak+ ak), N 3 = p(b+l+ I bj)

ID = P(ak+l a), D3 = p(bj+j Ibj)

USince N 2 = D 2 and N 3 = D 3, they each cancel out in (3.5.5) leaving

I
P(Xk+l I z Zk, 4+I, A', bj+=, i)

p(zI+I _ Xk+,,ak+_, A', b+,,Bi, Zk)P(Xk+ I a', A'-,,
+ , , , , , Z ) (3.5.6)

P(Zk+ I ak+,, Ak, bL+ 1, Bi, Zk)

3 The density function of (3.5.2) used in the MGS algorithm is an approximation to

(3.5.6), since it eliminates the past bias term sequences in (3.5.6). Using a similar

3 development, the weighting term of (3.5.1) used in the MSG algorithm is an

approximation to the weighting term of (3.5.4), since the past bias term sequences

3 are eliminated here also. The MGS algorithm uses only the information contained
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in the present bias values, thereby leading to a suboptimal state estimate (3.5.1).

I Even though the GS algorithm produces an optimal state estimate, it can

Inever be found in practice since the number of GS terms increases exponentially

from one iteration to the next according to (3.1.15) and (3.1.22), combined below

4+1 = W4 (3.5.7)S
In order to reduce this growing number to some prescribed fixed number E' at each

Iiteration, Alspach [6] proposes a suboptimal estimate based on observed

mechanisms that allow terms to be neglected or combined. At iteration k, he drops

weighting terms (3.1.16) and (3.1.23) that fall below some prescribed threshold. He

also combines several GS terms of (3.1.11) into one term if their means (3.1.12) and

variances (3.1.13) have become approximately equal. These two operations are

used until only j = '" significant terms remain. Then, at iteration k+1, the

number of GS terms grows again to the larger number k+l according to (3.5.7), is

reduced by eliminating and combining terms until +l = E', and the cycle repeats

5for all subsequent iterations. This method results in a substantial reduction in the

number of GS terms with a negligible effect on the p(xk+i I Zk+i) density

* approximation.

On the surface, it appears that Alspach's suboptimal Gaussian sum (SGS)

I algorithm can achieve performance equal to that of the MGS algorithm, since only

3a fixed number of terms is used to produce the state estimate. However, in order

for the SGS algorithm to produce the fixed number of terms ', the larger number

I of terms qhrk-' must first be generated, requiring qkr-- parallel filters. The MGS

algorithm requires only ' filters at each iteration to produce a E' term state

3estimate. The computational savings of the MGS algorithm is considerable. Even
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if the plant and measurement noise processes (3.1.5) and (3.1.6) were approximated

I using the minimum number of two terms each (qk = rk = 2), the SGS algorithm

would require a number of filters qkrk = 4 times greater than the MGS algorithm.

A third difference is that the GS algorithm must always use time-varying

Kalman gains while the MGS algorithm allows the use of steady-state Kalman

gains. The growing memory problem of the GS algorithm prevents steady-state

5 Kalman gains to be calculated off-line before running the state estimator. The SGS

algorithm must also use time-varying gains because the elimination and

I combination of terms is performed at each iteration. Therefore, the Kalman gains

3 could never be computed in advance. The MGS algorithm uses the same fixed

number of filters at each iteration. With constant covariances Q and R of the

plant noise (3.3.2) and measurement noise (3.3.4) used in the gain equations for

each ij~h filter, steady-state Kalman gains could be calculated off-line. Even if Q

3 and R were different for each ijth filter, they would then be modeled as semi-

Markov processes, with values randomly selected from fixed sets of discrete values.

ISince all the covariance values would be known in advance, steady-state Kalman

5gains could again be calculated off-line.

A fourth difference between the two algorithms is the use of Markov transition

3 probabilities in the weighting term of the MGS algorithm, restated here for

convenienceI
Wk+I = Ck+N[zk+,, Rk+,l W-' w (3.5.8)

0=1 j=1

3 The weighting term of the GS algorithm at iteration k+l is

I ki a 4fI+lg~k+l I+j (3.5.9)

, k+iik+ImWk+lj
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Define the scale factor asI
o+1 (3.5.10)1 

11 Qak+l k+lmWk+lj

Using the definition of the a'+ji termi
a+i, = aklflk, (3.5.11)

and (3.5.10) in (3.5.9) results in

I k+lj = A+lWk+lj[^k+lfklak (3.5.12)

The GS weighting term (3.5.12) now has a similar recursive form as the MGS

weighting term (3.5.8), with A'+, and C'+ 1 being the respective scale factors, and

PWk+l. and N[Zk'J+, Rk+l] being the respective Gaussian density functions based on

I the measurement data. The main difference between the two weighting terms is

the Markov transition probabilities in (3.5.8) and the -fk+ ,/k,3 factor in (3.5.12).

The Markov probabilities govern the chances that'a bias term is going to switch

from one value to another. The )'k+1 Ifk. factor is formed from the weighting

i terms of the Gaussian sum approximations of the nonGaussian densities (3.1.5) and

(3.1.6), and has no meaning similar to the Markov probabilities. Of course, the

current number of ak+1I terms is larger than the previous number of ak, terms at

the each iteration, while the number of w +l terms remains fixed at each iteration.
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4.0 APPLICATION TO A MODAL SYSTEM

I
I

IThe modified Gaussian sum (MGS) adaptive filtering technique of chapter 3 is

now applied to a modal system problem. Large, heavily damped structures

modeled by a plant with complex modes are considered in [1]. The input to the

plant is unknown, but its frequency characteristics are known and the input is

3 always present. The nonGaussian nature of the input signal is modeled using the

signal model of chapter 3, and the MGS adaptive filter for this system is developed.

IA simulation example using the MGS adaptive filter is given and the results are

1 compared to those produced from an augmented Kalman filter based on a system

model assuming a narrowband Gaussian input signal. A necessary condition for

3effective estimation is derived. Alternate estimation procedures are developed to

compensate for situations when this condition is not met. Several configurations

I are simulated and their performance results are analyzed and compared.

I
*4.1 Modal System and Filter Development

3 The MGS algorithm is applied to a modal system with a nonGaussian input
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signal and Gaussian plant and measurement noise. The theoretical foundation for

Ithis system, which serves as a model for large, heavily damped structures, is found

in [1] and briefly outlined in appendix A. Using a zero-order-hold model, the

resulting discrete-time system equations with added noise terms are

I
Xk+= (Xk + ruk + 'Wk (4.1.1)

Zk HXk + Duk + Vk (4.1.2)

uk bk + n k  (4.1.3)

where xk+1 is the state vector

Zk is the measurement vector

Wk is a zero mean white Gaussian plant noise process with

covaxiance Q

Vk is a zero mean white Gaussian measurement noise process

with covariance R

I , r, T, H, D are the respective constant transition matrices

I Uk is the vector Gaussian sum (GS) signal model of the actual

nonGaussian input signal, comprised of semi-Markov bias

i vector bk, and zero mean white Gaussian noise nk with

semi-Markov covariance Sk

and the random quantities Xk, Wk, Vk, bk, and nk are assumed to be mutually

statistically independent.

There are two important differences between the modal system of (4.1.1) -

(4.1.3) and the general system of chapter 3, (3.3.1) - (3.3.4). The first difference is

3 that in the modal system, the signal Uk is an input not only to the plant, but is also
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fed through to the measurement z k . Inserting (4.1.3) into (4.1.1) and (4.1.2)

I produces modified plant and measurement equations

Xk+i = 'TXk + Jbk + %Fw (4.1.4)

3 Zk = Hxk + Dbk + v'k (4.1.5)

where

wk = rn k + Wk (4.1.6)

v = Dnk + vk  (4.1.7)

5Because nk appeaxs in both (4.1.6) and (4.1.7), wk and vk axe correlated Gaussian

random processes. At first glance, this correlation may seem to be an obstacle in

3 developing the Kalman filter equations for this model, since the Kalman filter

development requires that the plant and measurement noise processes be

uncorrelated. However, what is really necessay in this situation is for w'- and vj

to be uncorrelated [57]. Rewriting (4.1.4) for Xk gives

1' = kXk-I + rbkl + 'PW'k-I (4.1.8)

iand substituting (4.1.8) into (4.1.5) gives

I Zk = H(4Xk-I + rbkl1 + %Fw',-1) + Dbk + vk (4.1.9)

thereby showing that any covariance calculations involving (4.1.9) will involve the

icorrelation between w'- 1 and v, and not between wj and v. The correlation

between w'- 1 and v is given by
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t~'-lv"I = E[(rnk_.l + vI'Wk-1l)(Dnk + Vk)']
I=rE[nk-In']D' + rE[nk-1 VT] + QE[wk-In T]D T + %PE[wk-JvT] (4.1.10)

I0

3 since Wk, Vk, and nk are assumed to be mutually statistically independent.

The second difference is that the covariance Sk of the GS signal model is no

Slonger constant, but can vary with time. The bias vector bk and covariance Sk are

both semi-Markov processes with state transitions governed by a single Markov

I transition probability matrix. That is, values of bk and Sk will be paired together

5and will randomly switch from one pair to another. The switching covariance can

be thought of as changing the power of the Gaussian process.

3 As in chapter 3, the optimal estimate ik+1 of the state vector is found by

minimizing the mean-square error between Xk+ 1 and ik+1. This results in the

3conditional mean estimate

1 xk+1 = E[Xk+l I Zk+] = 00 Xk+lP(Xk+l I Zk+) dxk+l (4.1.11)

where Zk+1 is the current measurement sequence {Z 1 ,Z2,..., zk+ 1 }. The conditional

I density function of (4.1.11) can be written as the ratio of the corresponding joint

and marginal densitiesI
P(X,+l I Zk+l) = P(Xk+l' Zk+1) (4.1.12)

p(Zk+l)

5 The bias vector bk and covariance matrix Sk are explicitly brought into (4.1.12) by

considering the joint density p(xk+l, Zk+i) to be a marginal density found from

3p(xk+l, Zk+l, bk = bi, Sk = Si) by summing over the bk and Sk terms
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Sp(Xk+l, Zk+i, bk = b,, Sk = S)
P(Xk+ i Zk+ 1P(Zk+l) (4.1.13)

After some additional algebraic manipulation, the optimal estimate of (4.1.11)

becomes

M
k+1 = Z4'+ip(b,,S, I Zk+,) (4.1.14)

where 4+1 is the conditional mean estimate of xk+1 given that bk = bi and Sk = Si,

denoted by

-004 4 +~'i = J ~ ~~IZ~~,S)dki(4.1.15)

and the weighting factor p(bi, Si I Zk+l) is the probability that bk = bi and Sk = Si

given the current measurement sequence. The overall estimate of (4.1.14) is then a

weighted sum of M individual estimates, each based on a particular pair of

parameters bi and Si.

Each individual estimate (4.1.15) is found by a modified Kalman filter. Using

the same method in chapter 3, the Kalman filter equation for (4.1.15) is

k+ = + Fb, + K'+l[zk+l - Dbi - H(W4 + Fb,)] (4.1.16)

with covariance and gain equations

M,= ZP T- + rsrT + 'Q' T  (4.1.17)

K'+i = M+" H T (HM+ T + DSD T + R) -1  (4.1.18)
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= (I - K+,H)M+ (4.1.19)

Note that (4.1.17) - (4.1.19) are now dependent on S i so that an individual set of

these equations has to be computed for each it h estimator (4.1.16), whereas in

chapter 3 only one set was computed and used for all individual estimators.

As in chapter 3, the next step in producing the overall estimate (4.1.14) is to

3find the weighting term p(bi, Si I Zk+l). Using Bayes' theorem, and writing Zk+1 as

{Zk, zk+l, the weighting term becomes

p(biSi I Zk+ 1 ) = P(Zk+l I bi, Si, Zk)p(bi, Si I Zk) (4.1.20)
P(Zk+l I Zk)4

3 The denominator term is independent of i and is a scale factor that ensures that

the sum of the weights (4.1.20) at each iteration is equal to one. The first term of

the numerator can be modeled as a Gaussian density if the bias and covariance

terms switch slowly compared to the sample interval k. This is the same

Iassumption made in chapter 3. This conditional density is

p(zk+l I b,,S,,Zk) = N[H($ + rb,) + Db,, HMi+1 H T + DSD T + R] (4.1.21)

The mean and covariance of (4.1.21) are readily available from the Kalman filter

5 equation (4.1.16) and the Kalman gain (4.1.18).

* The second term of the numerator can be rewritten to explicitly include the

sample time for the bias and covariance termsI
p(b,, Si I Zk) = p(bk+l = bi, Sk+1 = Si I Zk) (4.1.22)
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Using Bayes' rule and the definition of marginal densities, (4.1.22) is expanded into

M
p(bi, Si I Zk) = Zp(bk+ l =bi , Sk+l=Si I bk=bj, Sk=Sj)p(bk=bj, Sk=S, I Zk) (4.1.23)~j=l

I As in chapter 3, the following notation is used to express the terms of (4.1.23)

9'a1 = p(bk+l = bSk+I = Si I bk = bS Sj) (4.1.24)

wi = p(bk = bi, Sk = S I Zk) (4.1.25)

The term (4.1.24) is a Markov transition probability [22]; that is, 0eas is the

conditional probability that b = bi and S = S i at time k +1, given that

b = bj and S = S at time k. The term (4.1.25) is of the same form as (4.1.20) and

is just the previous weighting term at the previous time interval k.

Combining (4.1.21), (4.1.24), and (4.1.25), the weighting term (4.1.20) is

written as

M

wk+1 = p(b, Si I Zk+I) = Co,+lp(zk+l Ibi, Si, Zk) E OibSwi (4.1.26)

j=l

where C'+1 is a scale factor determined at each time interval such that the sum of

all the weighting terms (4.1.26) is equal to one.

The equations for the modified Gaussian sum adaptive filter for the system of

(4.1.1) - (4.1.3) are summarized in Table 3. The structure of the overall adaptive

filter is again a bank of Kalman filters operating in parallel, with each individual

estimate multiplied by its own corresponding weighting term. The ith estimator

based on the bias and covariance pair that most closely matches the actual bias

and covariance pair of the modeled system will have a corresponding weighting
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term that tends closer to one, while the weights of the other mismatched

I estimators will tend towards zero. A block diagram of the MGS adaptive filter for

p this modal system is shown in Figure 5.

3Table 3.

Modified Gaussian sum adaptive filter equations for a modal system.

System: Xk+I = 4PXk + rUk + I'Wk

SZk = Hxk + Duk + vk

uk = bk + nk

~M

Overall estimate: Xk+1 = P(bi, Si JZk+I)
i 1

I Kalman filter equation: k+I = 4 + rb, + K+l[zk+' - Db, - H(I4i' + rb,)]

Kalman gain equations: Mi+ 1 = 4p v + rsr T + %IQ*T

__ = M+lH T (HM'k+IHT + DSD T + R) -1

= (I - Kk+IH)Mk+l

M

Weighting term: wk+l = p(bi, Si I Zk+I) = Co+lp(Zk+l I bi, Si, Zk) F, 9'bwL

with p(zk+1 I bi, Si, Zk) = N[H(ti4 + rb,) - Dbi, HM'+,HT + DSD T + R]

-O6' = p(bk+l = b, Sk+1 -= Si I bk = bj, Sk Sj)

Iwj = p(b = bi, Sk = Sj I Zk)

M

and scale factor C*+1 such that + = 1
A=M
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I Figure 5. Modified Gaussian sum adaptive filter structure for a modal system.
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4.2 Simulation Example

An example applying the MGS algorithm to a modal system with a

nonGaussian input signal is now presented. The results are compared to those

produced from an augmented system model assuming that the input signal is

Gaussian. A second-order system is used, modeled by the transfer function

G(s) = s 2 + cs+d (4.2.1)
s + as+ b

and in continuous-time state space form as

i(t) = Ax(t) + Bu(t) (4.2.2)

y(t) = Cx(t) + Du(t) (4.2.3)

The system matrices are defined by

A=[b ia1] B=[ ] C=[ d-b c-a] D [ 1 ] (4.2.4)

where the resonant frequency of the system is fo = 20 Hz and the damping

coefficient is Co = 0.1 so that

a = 2Co(27rfo) b = (27rfo) 2  c = 5a d = 5b (4.2.5)

Using a zero-order-hold model with a sample time of T = - second, the equivalent

discrete-time system with added noise terms becomes
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Xk+l = t4 Xk + ruk + 'PWk (4.2.6)

Zk = HXk + Duk + Vk (4.2.7)

where

1-[.3271 0.0057 0-.00011-89.2411 -0.4691 0.0057 100
.5 (4.2.8)

H [ 63165 100.53] D=[ 1]

The plant noise w k is zero-mean white Gaussian with covariance Q = 10', and is

uncorrelated with measurement noise Vk, which is also zero-mean white Gaussian

with covariance R = 10-2.

The nonGaussian input signal is a stochastic FM signal generated by frequency

modulating a sinusoid with a Gaussian process. The form of the signal is

u(t) = Au sin(2rf t + ku fom(T)dr) (4.2.9)

where the amplitude is Au = 5, the carrier frequency is fu = 2 Hz, the modulation

index is k, = 10, and m(t) is zero-mean white Gaussian noise with variance 1.

Figure 6a shows the FM signal u(t) for 1 second. The probability density function

of u(t) has the form [58]

S1 _ U w < Au,P(u) 1 {I< (4.2.10)

0 lul >! AU (..0

Figure 6b shows a plot of the density function of (4.2.10), while Figure 6c shows a

normalized histogram of a 10 second sample of u(t). Note how closely the
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Figure 6. (a) Stochastic FM signal u(t), (b) probability density function of u(t),
(c) normalized histogram of u(t).
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histogram matches the actual density function.

I The nonGaussian input signal u(t) of (4.2.9) will be modeled in discrete-time

using the Gaussian sum (GS) signal model described in section 4.1

3 Uk = bk + nk (4.2.11)

3 with GS density approximation described in chapter 3

MI p(u) = ZPN[b,,Si] (4.2.12)
i=1

Figure 7 compares the nonGaussian density function (4.2.10) of the stochastic FM

input signal with a three-term GS density approximation (4.2.12) minimizing the

L' norm (3.2.11). Table 4 lists the values of Pi, bi, and S i used in the Gaussian

-- sum approximation and the MGS adaptive filter.

Table 4.

Gaussian sum Pi, bi, and Si values.

i Pi b S,

1 0.1 -5.0 0.04

2 0.1 5.0 0.04

3 3 0.8 0.0 4.28

It is assumed that the nonGaussian input signal u(t) is much larger than both

the Gaussian plant noise Wk and the Gaussian measurement noise Vk. However,

allowing the power of u(t) to be larger than the power (covariance Q) of Wk and
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Figure 7. Stochastic FM signal and Gaussian sum probability density functions.
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power (covariance R) of Vk is not enough to ensure good MGS simulation results.

IThe nonGaussian input signal u(t) is modeled by Uk (4.2.11), which will take on

different bi, Si pairs at various times. The lowest value of Si from Table 4 is

S. = 0.04. From covariance equation (4.1.18) and Kalman gain (4.1.19), repeated

here for convenience

M+ = I)P I T + rsrT + lQ'I T

Kg+1 = MC+,H T(HM'+1 H T + DSDT + R)-

it is apparent that for good MGS simulation results, covariances Q and R must be

selected such that the elements of JSiI T are larger than the elements of TQ@T, and

the elements of DSDT are larger than the elements of R. This specification is met

using Si = 0.04, Q = 10- 10, R = 10- 2, and r, T, and D from (4.2.8), giving

LT 2.8 x 1010 1.9 x 108 1 1.0 x 1010 1.0 x 10-81
1.9 x 10- s 1.3 x 10-6 j 1.0 x 10-8  1.0 x 10- 6

DSiDT = 0.04 R = 0.01

3 For comparison purposes, the nonGaussian input signal u(t) of (4.2.9) will also

be modeled as a naxrowband Gaussian signal, generated by passing white Gaussian

I noise through a linear, time-invariant filter. This shaping filter is designed using

the frequency characteristics of u(t). Figure 8 shows the power spectral density of

u(t) and the power spectral density of a second-order shaping filter, modeled by the

* transfer function

+= NbS (4.2.13)G(S)=s + a~bS + bnb
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Figure 8. Stochastic FM signal and shaping filter power spectral densities.
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and in continuous-time state space form as

Xnb(t) = AnbXnb(t) + BnbWnb(t) (4.2.14)

Unb(t) = CnbX.b(t) (4.2.15)

The system matrices are defined by

Anb = 1  Bnb=[ Cnb= 0 1 (4.2.16)-bnb -anb 1

with resonant frequency fnb = 2 Hz and damping coefficient Cb =L such that

a~b = 2 (.b( 2 7rf b) = 4 bnb = (27rfnb) 2 = 157.91 (4.2.17)

and Wnb is zero-mean white Gaussian noise with variance N'b =(120)2.

The Gaussian input model Unb(t) of (4.2.15) is now assumed to model the

stochastic FM iriput u(t) of (4.2.9) by augmenting the system equations (4.2.2) and

(4.2.3) with the shaping filter equations (4.2.14) and (4.2.15), giving

t.,(t) = Aaxa(t) + B.wn;(t) (4.2.18)

y0 (t) = C.x.(t) (4.2. 19)

The system matrices of (4.2.18) and (4.2.19) are defined by

o.t ~t A l =n [ 1 C C Dn](4.2.20)Xnb(t) A 0 A b BCb

Using a zero-order-hold model with a sample time of T = 6 second, the equivalent
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discrete-time augmented system with added noise terms becomes

i X+1 = 4kxa + wub + 'wk (4.2.21)

k k H + + Vk (4.2.22)

where

-0.3271 0.0057 -0.00 00090.00008 1
-89.2411 -0.4691 -0.0129 0.00524 100[ 0 0 0.9786 0.0160 %Fa 0

0 0 - 2.5275 0.9 146 0 ( . . 3I (4.2.23)

H=[ 63165 100.53 0 1 ]

The first plant noise term wk6 is the discrete-time version of the continuous-time

plant noise wnb(t) of (4.2.14), with new covariance found from [5] as

ST AarB.N 2 TeAQnb= J T aNbB eATr dT

I or

0.00002 0.0024 0.0047 0.0374

Qb 0.0024 0.0329 0.0564 55.85 (..4
0.0047 0.0564 1.048 92.22 (4.2.24)

0.0374 55.85 92.22 11194

The second plant noise term Wk and the measurement noise Vk are the same as

those found in (4.2.6) and (4.2.7). The three processes w~b, Wk, and Vk are assumed

to be mutually statistically independent.
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The Kalman filter based on the augmented system (4.2.21) and (4.2.22), is

I given by

k+1 = 4a',-k + K,+ [Zk+l - H 0 40 k (4.2.25)

with covariance and gain equations

M +l=' P " + Q b + ' ,' Q', (4.2.26)
ka k aT

K+ = MZ+IH,,(HGM%+IH, + R)-1  (4.2.27)

Pk+l = (I - K'+,H,)Ma+1  (4.2.28)

Note that in (4.2.25) the measurement zk produced from (4.2.6) and (4.2.7) using

the actual nonGaussian input signal (4.2.9) is used instead of the measurement z4

from the augmented system (4.2.21) and (4.2.22).

The MGS filter is initialized with equally-valued weighting terms

w j = 1  for j = 1,2,3 (4.2.29)I 3,

A Markov transition probability matrix Oeis, consisting of 0's elements, is

configured with a high probability that the bias term does not switch from one

value to another, and a low probability that the bias term does switch, such as

I [ .95 .025 .0251
Eb,- .025 .95 .025 (4.2.30)

.025 .025 .95

The initial values of the state, state estimate, and error covariance for the

MGS adaptive filter are

APPLICATION TO A MODAL SYSTEM 6



X0 0] o:0.0004- P, 10000 0 4.2.31)
Zo=0 0.0135J P 0 10000

and for the augmented Kalman filter are

Ip

-0.0004- 10000 0 0 0

3 0 0.0135 p 0 10000 0 0 1
0 0 0 0 0 10000 0

0 0 0 0 0 10000

Figure 9a shows the first state xk+, and the overall state estimate i'+, from the

MGS adaptive filter, while Figure 9b shows the first state xk+l and the overall

state estimate . + from the augmented Kalman filter. Figure 10a and 10b show

similar estimation results for the second state xk+. The MGS adaptive filter

performs very well, with its estimates tracking the states almost exactly. The

augmented Kalman filter however introduces considerable delay in its estimates.

Table 5 shows a normalized mean-square-error percentage measure for the state

estimates produced by

mse E[(x -

mse = E[x 2] x 100 (4.2.33)

The mse percentages for the augmented Kalman filter are considerably higher than

the mse percentages for the MGS adaptive filter due to the delay in the augmented

Kalman filter estimates. Figure 1la shows the weighting terms for each of the

three bi, Si pairs. Figure llb compares the three weighting terms with the

stochastic FM input signal, showing how the weights switch according to the

amplitude of the input signal.

I
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1
3 6E-04
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3E-04 - - MGS estimate
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-3E-04 ,.
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(a)
I 6E-04
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3E-04 AKF estimate

I -3E-04 -
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0 0.2 0.4 0.6 0.8
Time (kT)
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I

Figure 9. (a) State 1 and MGS adaptive filter estimate,

(b) state 1 and augmented Kalman filter estimate.
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0.04
0- 

State 2

0.02- MGS estimate

-0.02

-0.04
0 0.5 1 1.5 2

Time (kT)

(a)

0.04

F State2
0.02 3)sa ft AKF estimate

-0.02

-0.04
0 0.5 1 1.5 2

Time (k0)

(b)

Figure 10. (a) State 2 and MGS adaptive filter estimate,

(b state 2 and agetdKalman filter estimate.
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Table 5.

Normalized mean-square-error percentage for state estimates.

State MGS Augmented

filter filter

1 1.85 14.76

2 3.35 227.67

mse %= E[(x _)i 1 x 100

mseE[X 2]
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Figure 11. (a) Weighting terms, (b) weighting terms compared
with stochastic FM signal.
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4.3 Necessary Condition for Effective Estimation

The conditional density (4.1.21), which appears in the weighting term (4.1.27)

is of prime importance in determining whether or not the MGS adaptive filter will

work properly for a given system. As previously stated, the th estimator (4.1.16)

based on the bias and covariance pair that most closely matches the actual bias

and covariance pair of the modeled system will have a corresponding weighting

term that tends closer to one, while the weights of the other mismatched

estimators will tend towards zero. The bias and covariance pairs influence the

weighting terms through the conditional density (4.1.21), rewritten here as the

n-dimensional (Zk+l is an n x 1 vector) Gaussian conditional density

lIiT I - 1 IIP(Zk+l I b,S,,Zk) = 1rL+, 11/2 e- Ik+,k+l-t+, (4.3.1)
(27r/ R'+ 1/ (.31

where

R+l = HM'+1 H T + DSD T + R (4.3.2)

is defined as the ith measurement covariance from Kalman gain (4.1.18) and

rI+l = zk+1 - Db, - H(4b'k + 1bi) (4.3.3)

is defined as the & measurement residual from Kalman estimator (4.1.16).

Essentially, the measurement residual of the matched filter (with the bias and

covariance pair that most closely matches the actual pair of the modeled system)

will have the smallest expected value, typically zero mean. The residuals of all the
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other mismatched filters will be biased. Under the Gaussian assumption, the

probability of the matched filter will be the largest among all the filters.

In the previous simulation examples of chapters 3 and 4, this method of

calculating the conditional measurement probabilities (4.3.1) and th estimator

weighting terms (4.1.26) works very well, producing very accurate state estimates.

However, in the case of the force to acceleration modal system described in [1] and

by (A.5) of appendix A, this method did not perform well. Upon analysis of

several simulations, it appeared that the statistical steady-state value (that is, the

steady-state value of the expected value) of the measurement residual of each in"

filter converged to zero. Only the correctly matched filter is supposed to have a

statistical steady-state (SSS) value of zero, while the residuals of the mismatched

filters are supposed to be biased. Yet, in this case, none of the residuals were

biased. Therefore, the MGS algorithm could not detect which filter possessed the

correct bias and covariance pair, and the weights of all the filters converged to the

same value.

Upon investigation, it has been determined that the SSS value of the ith

measurement residual (4.3.3) is not only a function of the bias term bi, but is also a

function of the dc gain of the system transfer function from Uk to Zk

G(z),= Gdc = H(I - t)-,r + D (4.3.4)

The dc gains of the systems used in the previous simulations of chapters 3 and 4

are nonzero, producing different SSS residual values due to the different bias and

covaiance pairs. As shown in appendix A, the dc gain of the force to acceleration

modal system is zero, producing equal SSS residual values despite differences in the

bias and covariance pairs.
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In order to show the dependency of the SSS residual value upon the system dc

gain, first rearrange the ith Kalman filter equation (4.1.16) as

k+1 = (I - Kk+ 1H)(4, + rb,) + Kk+,(zk+l - Db,) (4.3.5)

and take the expected value

E['+,] = (I - K'++H)(tE[4] + Fb,) + K'+,(E[zk+l] - Db,) (4.3.6)

Equation (4.3.6) requires the expected value of the measurement model (4.1.2) at

iteration k+1, given as

E[zk+l] = HE[xk+l] + Duk+ + E[vk+l] (4.3.7)

with utk+l being the actual input signal, assumed known for this development.

Substituting the plant model (4.1.1) for Xk+1 in (4.3.7) gives

E[zk+l] = HE[4xk + ruk + 'I'Wk] + Duk+l + E[vk+l]

= HSE[xk] + Hruk + HPE[wk] + Duk+1 + E[vk+l]

= HfE[xk] + Hruk, + Duk+l (4.3.8)

since wk, and Vk+l are each zero mean. Substituting (4.3.8) into (4.3.6) produces

E[3++] = (I- K'+ 1H)('IE[4i]+ Fbi)+ K'+(HtE[xkI + Hruk + Duk+,- Db,) (4.3.9)

Now, let (4.3.9) reach steady-state with E[4+l] = E[i'] = ^. and Uk+1 = Uk = U.
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The SSS value of (4.3.9) is then

I = (I- '+ 1ba) + K .(HIxo + Hru + Du - Db,) (4.3.10)

To find x.., the SSS value of the state model (4.1.1), first find the expected value

E[Xk+lI = IE[xkI + rUk + %FE[wk]

= E[Xk] + rUk

and let E[xk+l = E[xk] = Xo and Uk = u at steady-state

xI - X8 8 + ru

Solving for x., gives

Xo = (I- 'i)-1 ru (4.3.11)

and substituting (4.3.11) into (4.3.10) produces

S(I - KooH)(-Pioo + rb,) + K ,H(I - t)-iru + K.°(Hru + Du - Db) (4.3.12)

Now, the P(I - 4)-1 term of (4.3.12) can be rewritten as the identity

3 (I- I)-i = (I - i)-' - I (4.3.13)

since post-multiplying both sides of (4.3.13) by (I - 4) shows the equality
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I
I

(I- )-(I - ))= (I - )-1( _ -) (I - ))
i4 (=I -I+,4

3- Substituting (4.3.13) into (4.3.12) and expanding gives

K.H)I.. + (I - K',H)rbi + KCH(I -)-Iru

- K;,Hru + K,',HIu + K',Du - K', Db,

I( .H)o. + (I K',H)rb, + K',H(I -)-iru

+ KBDu - K' Db,

I
K= KH)$,Ix + (I - K',H)Fb, - K',Db, + K',[H(I - -4 )-1r + D]u

- KoH)4']i, = (r - KHr - K',D)b, + K',[H(I- (I))-'r + D]u

or

.3,.^, = [I - (I - K',H)4]-'f[r - Ki,(Hr + D)]b, + KI,[H(I - ))-1r + DJu} (4.3.14)

With x;, (4.3.11) and ^
, (4.3.14) known, the SSS value of the ith measurement

3 residual (4.3.3) can now be found. Taking the expected value of (4.3.3) and using

(4.3.8) produces

E[r'+] = HtE[xk] + Hruk + Duk+l - Db, - HE[i] - Hrb, (4.3.15)
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Letting (4.3.15) reach steady-state, with E[r+l] r., and Uk+1 = Uk u, the result

is

r , = Hbx,° + Hru + Du- Db,- HgCI - Hrb, (4.3.16)1
Using (4.3.11) and (4.3.13), HtIx°, is rewritten as

£
Hx°. = H4(I - ,)-'ru = H(I -i)-'ru - Hru (4.3.17)

Substituting (4.3.17) into (4.3.16) produces a cancellation of terms

r = H(I I))-I-HFu + Hu + Du - Db - H-°i 8 - HFbj

=H(I - qD)-'Fu + Du - Dbi -H - H bi

= jH(I - i)-'r + D]u - (Hr + D)b, - H4 8' (4.3.18)

I Using (4.3.14) in (4.3.18) gives

r., = [H(I -)-ir + D]u - (Hr + D)b,

- H4k[I-(I- KH)]-I{[PF- K(Hr + D)]bi+ K 8,[H(I- )-F + D]u} (4.3.19)

I The dc gain Gd, (4.3.4) appears in two places in (4.3.19) rewritten as

r' = GdU - (HF + D)b, - H[I - (I - KH)-]-{[F - K'(Hr + D)]b, + KGdCu}

I (4.3.20)

3 However, (4.3.20) can be simplified further using additional algebraic manipulation.
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The HF + D term can be rewritten by combining the dc gain (4.3.4) and the

identity (4.3.13) as

Cdc = H[4( - P)-l + I-I + D

= H4(I - f 1 +HF + D

so that

Hr + D = GdC - H4(I - )Ir (4.3.21)

Substituting (4.3.21) into (4.3.20) and rearranging terms gives

r. =GdcU - (GdC - H4(I- 4)-'r)bi

-H[I - (I - K' 8H)]-l{[F - K8 ,(GdC - Hd)(I - 1)-'r)]bj + K'.G

r = Gdu - Gdb, + H't(I - t)-iFbi

3.H4[I - (I - K',H)t]-'{Fb, - KBGdcbi- + KHt(I - t)-rbj + KiGdU}

Ir, = GdC(U - bi) + H4t(I - ,)-irbi

-H[I - (I - K'H)t]-'{[I + K' 5Ht(I - ,)-]rb, + K',Gd,(u - b,)} (4.3.22)

Next, the [I - (I - K'.H),] - ' term can be rearranged as

[I - (I - K °H)]-'= [(I - ) + K,Hkj-4 (4.3.23)

3 and factoring out an (I - ') term produces
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I
[(I - P) + K 5H(]-'= [(I + K 8,H,'(I-)- (4.3.24)

1
Using the identity

I (AB)-' = B-'A-'

if A and B are nonsingular square matrices, setting A = I + K',H(I - 4)-l and

B = (I- ), (4.3.24) is equal toI
[(I + K, H4(I - f)-1)(I - t)]-1 = (I - 0)=1(I + KI'Ht(I - )-1)-1 (4.3.25)

Combining (4.3.23) - (4.3.25) therefore results in

[I-(I- = (I - t)-'(I + K 8.H-(I - )-)- 1 (4.3.26)

Substituting (4.3.26) into (4.3.22) gives

r. = Gd(u - bi) + Ht(I - t)-,rbj

I- n4( I - 0)-(I + K..n(I - €)-1)-1 {[I + K,H¢(I - €)-,Jr, + KAoGdC(U - b)

and multiplying through gives a cancellation of terms

= Gd(u - bi) + Ht(I -4I)-rbi - H4(I - t)-irbi

- Ht(I -l)-1(I + K 5,H (I - 4) 1) K.Gd,(u - b,)

= Gdo(U - b,) - H(I - ¢)-1(I + K.Ht(I - t)- 1 )-1 K L Gdc( U - b,)

= [I - H,(I - ,)-(I + K',Ht(I - )-)-'K]Gc(u - bi) (4.3.27)
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Substituting (4.3.26) into (4.3.27), r., becomes finally

to [I - H44 - (I - KoH){]'KI]Gd(U - bi) (4.3.28)

The ith SSS residual value (4.3.28) is clearly a function of the dc gain Gd, as

well as the bias term bi . It also is a function of the covariance term Si through the

steady state Kalman gain K',. As a result, a nonzero dc system gain becomes a

necessary condition for effective estimation.

If Gd, is nonzero, then r., will be different for each bias and covariance pair.

The filter with the matched pair that causes r., to be the smallest will also cause

rk+ 1 (4.3.3) to have the smallest expected value of all the filters. The probability

(4.3.1) of this matched filter will then be the largest among all the filters, and will

produce the largest weighting term (4.1.26). If Gd, is zero, then r., is also zero for

all the filters. The differences between the bias and covariance pairs are masked,

causing the probabilities (4.3.1), and therefore the weighting terms (4.1.26), of all

the filters to converge to the same value. At this point, the MGS algorithm

becomes an ineffective estimation scheme. However, the alternate estimation

procedures described in the next section may provide a solution to this problem.

4.4 Alternate Estimation Procedures

A possible solution to the problem of zero dc system gain is to determine if an

alternate measurement provides a nonzero dc gain. For example, if in a particular

zero dc gain system acceleration measurements are taken, changing to velocity

measurements may provide a nonzero dc gain. If the actual sensors producing
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these measurements cannot be changed, integrating the acceleration measurement

data to produce approzimate-velocity measurement data may allow the MGS

algorithm to work effectively.

As shown in [1] and by (A.5) of appendix A, the force to acceleration modal

system produces acceleration measurement data at sensor grid points and has a

zero dc gain. This system is termed the acceleration modal system, or AMS.

Changing this AMS to produce velocity measurement data at sensor grid points

results in a new transfer function with a nonzero dc gain. This new system is

termed the velocity modal system, or VMS. Typically, changing the actual system

cannot be done in practice. However, given a large enough signal to noise ratio

between the input signal uk and measurement noise Vk, a good approximation of

the velocity measurement data can be generated by integrating the acceleration

measurement data from the AMS using a discrete-time integrator. Redesigning the

ith measurement covariance (4.3.2) and residual (4.3.3) to be based on the VMS

while actually using the integrated acceleration (approximate-velocity)

measurement data from the AMS produces proper weighting terms (4.1.26) that

allow the MGS algorithm to work effectively.

In order to illustrate this alternate estimation procedure, the system and filter

equations for the VMS are developed below. Using a zero-order-hold model for the

continuous-time force input to velocity output system described by (A.6) of

appendix A, the resulting discrete-time system with added noise terms is

Xk+1 "kXk + rUk + TWk (4.4.1)

Yk = H.xk + vu (4.4.2)

Uk = bk + nk (4.4.3)
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where Xk+l is the state vector

Yk is the velocity measurement vector

Wk is a zero mean white Gaussian plant noise process with

covariance Q

vt is a zero mean white Gaussian measurement noise process

with covariance RV

', F, %F, H are the respective constant transition matrices

Uk is the vector GS signal model of the actual nonGaussian

input signal, comprised of semi-Markov bias vector bk, and

zero mean white Gaussian noise nk with semi-Markov

covariance S;

and the random quantities Xk, Wk, vk, bk, and nk are assumed to be mutually

statistically independent. The state model (4.4.1) is exactly the same as the model

used previously (4.1.1), so that the states of the new VMS are exactly the same as

the states of the previous AMS. The Gaussian sum signal model (4.4.3) is also the

same as the model used previously (4.1.3). The measurement model (4.4.2) is

different than (4.1.2) because Yk is a velocity measurement while zk is an

acceleration measurement. Other differences in (4.4.2) include a new transition

matrix H, and a new measurement noise process vt with new covariance R,.

Following the same procedures in section 4.1, the MGS algorithm is applied to

the system of (4.4.1) - (4.4.3), producing the overall state estimate

M
r+ = R_ 1 p(b,, Si I Yk+1) (4.4.4)

i=1

where Y1+1 is the current velocity measurement sequence {YIY2,.. ,Yk+}, and -'I
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is given by the Kalman filter equation

Viv

k, = + rb, + K. l[yk+l - Hu(-If + rb)] (4.4.5)

with covariance and gain equations

k+I= p T  + rsr+ I T  (4.4.6)
KV. I= Mi IHT (Ht v ,, T + R) 1  (4.4.7)

Pv.l = (I - Kv+Hv)M"+, (4.4.8)

and weighting terms

M
"4 = p(b,,S, I Yk+,) = CQ+lP(Yk+l I b,,Si, Yk) E ZebiWki (4.4.9)I j=1

with

P(Yk+l I bi, Si, Yk) = N[Hv(Cf' + rbi), Hv 1H+lT + R,] (4.4.10)

Ob' = p(bk+l = bi, Sk+I = Si I bk = bi, Sk = Sj) (4.4.11)

wk' = p(bk = bi, Sk = Sj I Yk) (4.4.12)

where C'+ 1 is the scale factor determined at each time interval such that the sum

of all the weighting terms (4.4.9) is equal to one.

The conditional density (4.4.10) of the VMS is a function of the ith velocity

measurement covariance

R+ 1 = H.,M, T1H + Rv (4.4.13)
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and the ith velocity measurement residual

rk+1  = Yk+1 - Hv(C i + rb,) (4.4.14)

which requires velocity measurement data Yk+r. This data is not available, since

the actual system being simulated is the AMS which produces acceleration

measurement data Zk+1 In order to generate the proper probabilities (4.4.10)

needed by the weighting terms (4.4.9) for effective MGS estimation, approximate-

velocity measurement data -k+l, generated from the integral of zk+1 of the AMS, is

used in place of Yk+1 in (4.4.14) and (4.4.5). This requires a new Kalman filter

4+ 1 = I'z + rbi + KJ.l[yk+l - H.( 'k + rb,)] (4.4.15)

and new weighting terms

U M
wko'j = p(bi, Si Yk+1) = C'+lp(y +1 1 bi, Si,Yk)O ' (4.4.16)

j=l

requiring

P(' +1 1 b,,S,,Yk) N[H(M' + rb), H,,M+ 1HT + R,, (4.4.17)

S wk =p(bk = bj, Sk = Sj I 2Yk) (4.4.18)

The Kalman gain and covariance equations (4.4.6) - (4.4.8) and Markov

probabilities (4.4.11) can be used without modification since they are not

dependent on the approximate-velocity measurement data -+1.

5 The overall estimate can be calculated by three different methods. The first
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method produces

M

+1= +p(b,S, Ik+1) (4.4.19)

where 4+1 is the ith state estimate (4.1.16) from the AMS. There was never a

problem in calculating these AMS state estimates. It was the problem in

calculating the weighting terms that necessitated an alternate estimation scheme.

However, (4.4.19) requires two separate parallel banks of Kalman filters: one using

(4.1.16) to calculate f'+,, and a second using (4.4.15) to calculate
Wk+j = p(b,,S, I Yk~l).

The second method produces

M
+= k+lp(bi,S, I Yk+,) (4.4.20)R =1

where Rk+1 is the iAh state estimate (4.4.15) using approximate-velocity

measurement data with the VMS. This overall state estimate (4.4.20) requires

only one bank of parallel Kalman filters using (4.4.15) to calculate both FC and

Wk+ = p(bi,, S I Yk+l). This provides good computational savings over calculating

(4.4.19). However, (4.4.19) uses the actual AMS measurement data zk to calculate

k+1, while (4.4.20) never uses Zk in its direct form.

-- The third method uses the same state equation (4.4.1) and GS signal model

(4.4.3) as the AMS and VMS, but requires the use of a second new measurement

formed by combining z k (4.1.2) and Yk (4.4.2) into

(c= [z k HCXk + DCUk + Vi(4.4.21)i _]Yk
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where

H=[H] D=[D] Vj=[Vk] (..2
C4= H4 0 v

Again, velocity measurement data yk is not available, so approximate-velocity

measurement data Yj. is used instead producing

= Zk k;] (4.4.23)

The resulting Kalman filter equation is

3ji- = tZI+ i - rb, + K l[Ck+l - Dcb, - Hc(I i) + Ib,)] (4.4.24)

with covariance and gain equations (independent of - )

W = Pj ijT + rsir T + PQ'pT  (4.4.25)

Ki I= M +,HT(HCM +IHT + DCSjDT + R) -1  (4.4.26)

(I - KIHC)Mj+I (4.4.27)

where the covariance of vi is given by

R R[ 0 (4.4.28)

and the resulting weighting terms are

wi' = p(b,S, I %k+I) = C41 P(Ck+l bi, SiMk) E abiWi j  (4.4.29)
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where Zk+l is the current measurement sequence {C1',2'-,(b Ck, 9 is given by

(4.4.11), and

P(k+lI bi, S,, 2k) = N[HC(-11. i + rb,) + Dcb,, HcM iH + DSD + Re (4.4.30)

wi j = p(bk = bj, Sk = Sj I Ik) (4.4.31)

Forming measurement data Ck (4.4.23) allows both the state estimate (4.4.24) and

weighting term (4.4.29) to be influenced by both zk and 1/k at the same time, while

requiring only one parallel bank of Kalman filters. The overall estimate produced

by using this third method is

M
+i = , p(bI k+i) (4.4.32)

i=1

These alternate estimation procedures will be compared and evaluated in the

next section.

I4.5 Comparison of the Alternate Estimation ProceduresI
The alternate estimation procedures described in the previous section are

i compared and evaluated using a simulation example. The overall state estimate

k+1 (4.4.4) based on the VMS using true velocity measurement data Yk will also be

calculated as a benchmark for comparison to the three alternate overall state

5 estimates. For convenience, Table 6 provides a summary of the overall state

estimates used in the comparison. A force input to acceleration output modal

system consisting of three modes serves as the simulation example. The modes are
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calculated using (A.7) - (A.14) of appendix A. The parameter values of aj, Zcj, x,

and fi used in the three mode, six state model are given in Table 7.

Table 6.
Overall state estimates to be compared.

M!F. iv.1  mate '
a. = Z k lp(bj, Si Yk+I) Benchmark estimate. zth state estimate

and weighting term based on VMS

using true velocity measurement data.

M

b. k = + p(b, Si, k+i) jth state estimate based on AMS.

U= Weighting term based on VMS using

approximate-velocity measurement data.

M
c. k+I= E'Ip(b, I 1k+) state estimate and weighting term

based on VMS using approximate-velocity

measurement data.

- M -,.

d. 1 = E' +'+p(b, Si, I k+I) It" state estimate and weighting term

based on combined AMS and VMS using

acceleration measurement data and

approximate-velocity measurement data.

Table 7.
Parameter values for the three mode model.

i a, Zc, (rad) x (m) f, (Hz)

1 1.446813 5.686 17.5 95.63
2 4.934421 0.705 35.0 67.47

3 13.721530 1.598 52.5 28.02
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The system transition matrices are found from appendix A equations (A.5) for

the AMS and (A.6) for the VMS. Using a zero-order-hold model, a sampling time

of T = 0.001 seconds, and the values in Table 7, the discrete-time matrices for the

AMS are

0.8250 0.0009 0 0 0 0

-339.2108 0.8223 0 0 0 0

0 0 0.9118 0.0010 0 0
0 0 -173.5593 0.9022 0 0

0 0 0 0 0.9846 0.0010

0 0 0 0 -30.6059 0.9577

0.0069 0.0033 -0.0015

-2.7667 -4.5899 -4.9021

0.0014 -0.0040 -0.0071r =:(4.5.2)
-3.0180 -2.5293 -0.5295

-0.0059 0.0023 0.0038

-0.0314 0.9420 -0.8696

0 0 0

1 0 0
0 0 00 0 0(4.5.3)

0 1 0

0 0 0

0 0 1

-2807.66 16.1818 -5625.67 6.0323 -729.65 -11.57411

H = -7693.42 10.9286 -5815.17 -5.2798 2099.60 2.6883 (4.5.4)

-10046.6 2.0778 -2530.33 -13.4374 -1278.69 9.0026j

110.7665 -45.3759 -166.89501

D = -45.3759 -166.8950 -41.4010 (4.5.5)

-166.8950 -41.4010 -55.5049 J
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The H. transition matrix needed for the VMS is

F 16.2043 0.0078 6.3411 0.0313 -10.9321 0.0234 1
H= 10.9903 0.0213 -4.9605 0.0324 0.8409 -0.0673 (4.5.6)

2.1583 0.0278 -13.2985 0.0141 10.1277 0.0410

The measurement model of the combined AMS and VMS requires HC and DC

matrices formed using (4.4.22). The plant noise Wk of the state model is zero-mean

white Gaussian with covariance

I
1.4142 0 0 1

Q= 0 0.2828 0 (4.5.7)

0 0 0.0344

and is uncorrelated with AMS measurement noise Vk and VMS measurement noise

I v'. Both are zero-mean white Gaussian with respective covariances

r26.36 0 [0.0264 03 R= 0 19.77 0lRv = 0 0.0198 0 (4.5.8)

0 0 20.41 0 0 0.0204I

The measurement noise covariance RC of the combined AMS and VMS is given by

(4.4.28).

The nonGaussian input signal is the stochastic FM signal generated by

3 u(t) = A. sin(2rfut + kf 'm(r)dr) (4.5.9)
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I

where the amplitude is A. = 5, the carrier frequency is f, = 10 Hz, the modulation

index is k. = 100, and m(t) is zero-mean white Gaussian noise with variance 1.

Figure 12 shows the FM signal for 0.2 second. The probability density function of

(4.5.9) has the same form as (4.2.10).

The nonGaussian input signal (4.5.9) will be modeled in discrete-time using

the Gaussian sum (GS) signal model described in section 4.1

Uk = bk + nk (4.5.10)

with GS density approximation (4.2.12). For simplicity, the nonGaussian input

signal is applied only to mode 1.

Three filters are used in each MGS adaptive filter of Table 6. Using the values

of Table 4, the bi and Si parameters for the three filters are

b,= 0 b2 = 0 b3 =0 (4.5.11)

004 1 4.28

S!152[ 0 0.04 0 4.28 0 (4.5.12)

0 0 0.04 0 0 4.28

Three of the MGS adaptive filters of Table 6 require approximate-velocity

measurements. A discrete-time integrator implementing the trapezoidal rule is

3used, given by [59]

Yk+i = Yk + T kZk+l + Zk) (4.5.13)
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Figure 12. Stochastic FM input signal.
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Figure 13a shows the mode 1 acceleration measurement Zk, while Figure 13b shows

I both the mode 1 actual velocity measurement Yk and approximate-velocity

measurement Vk- The two velocity measurements track fairly closely under low

noise conditions.

1 Each MGS adaptive filter is initialized with equally-valued weighting terms

j = 1, for j= 1,2,3 (4.5.14)IW 3,

I A Maxkov transition probability matrix Obs, consisting of 0b's elements, is

configured with a high probability that the bias term does not switch from one

value to another, and a low probability that the bias term does switch, such as

I
[.85 .075 .075

I =b .075 .85 .075 (4.5.15)

.075 .075 .85

3 The initial values of the state, state estimate, and error covariance for each MGS

adaptive filter areB
0 0.2 100000 0 0 0 0
0 152 0 10000 0 0 0 0
0 0.2 0 0 10000 0 0 0

Xo0 62 0 0 0 0 10000 0 0 (4.5.16)

0 0.2 0 0 0 0 10000 0

L 0 37 0 0 0 0 0 10000
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Figure 13. (a) Mode 1 acceleration measurement Zk, (b) mode 1 actual velocity

measurement Yk and approximate-velocity measurement yk.
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Each plot in Figure 14 shows the position state from mode 1 and an overall

position state estimate from a particular MGS adaptive filter. Figures 14a, b, c,

and d follow the designations of Table 6: estimator a, k+1, estimator b, 9+j;

estimator c, k+1; estimator d, i+1. Each plot in Figure 15 shows the velocity

state from mode 1 and an overall velocity state estimate from a particular MGS

adaptive filter. The states and state estimates are shown for mode 2 in Figures 16

and 17, and for 0.4 seconds of mode 3 in Figures 18 and 19. Apart from benchmark

estimator a, the best estimates appear to come from estimators d and c, while

estimator b deviates the most from the actual state.

Figure 20a shows the slightly noisy weighting terms used in estimator a.

Figure 20b shows the weighting terms used in estimators b and c, which are

smoother due to the effect of integrating the acceleration measurements. Figure

20c shows the weighting terms used in estimator d, which are also smoother than

those of estimator a, and reach and remain at their peak values more so than those

of estimators b and c.

Table 8 shows a normalized mean-square-error percentage measure for the

state estimators, calculated using (4.2.33). The mse percentages are the lowest for

benchmark estimator a, followed by estimators d, c, and a.

Figure 21a shows the three mode 1 residuals (4.2.3) produced from the MGS

adaptive filter using the zero dc gain force to acceleration modal system (A.5) of

appendix A. The three residuals become equal once steady-state is reached.

Figure 21b shows the three mode 1 residuals produced from the MGS adaptive

filter using the nonzero dc gain force to velocity modal system (A.6) of appendix A.

The residuals remain biased throughout the simulation.
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Figure 14. Mode 1 position: (a) State and estimate R+I, (b) state and estimate f-+,

(c) state and estimate f+ , (d) state and estimate i-j+r
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Figure 15. Mode 1 velocity: (a) State and estimate ',+4, (b) state and estimate i +l,
(c) state and estimate R 1, (d) state and estimate 4+1.
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Figure 16. Mode 2 position: (a) State and estimate i', (b) state and estimate 44.1'

(c) state and estimate 4.,.l, (d) state and estimate X~i4 .
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Figure 17. Mode 2 velocity: (a) State and estimate 14, (b) state and estimate i+,

(c) state and estimate k+1, (d) state and estimate .
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Figure18. Mode 3 position: (a) State and estimate Rk+17 (b) state and estimate 2'+l,

(c) state and estimate k+j, (d) state and estimate 2+1-
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Figure 19. Mode 3 velocity: (a) State and estimate (b) state and estimate +,

(c) state and estimate k+,, (d) state and estimate fi+,-
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Figure 20. (a) Weighting terms, estimator a, (b) weighting terms, estimators b and ,
(c) weighting terms, estimator d.
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Table 8.

Normalized mean-square-error percentage for state estimates.

State Estimator a Estimator b Estimator c Estimator d

Mode 1 position 1.60 3.62 17.04 11.71

Mode 1 velocity 0.87 26.70 6.93 5.93

Mode 2 position 1.02 33.83 15.32 12.20

Mode 2 velocity 1.74 11.21 6.09 4.18

Mode 3 position 0.94 24.73 16.70 13.06

Mode 3 velocity 0.39 39.03 0.34 0.38

mse %= E[(x - i)2] x 100E[X2]
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Figure 21. (a) Residuals using the zero dc gain force to acceleration modal system,
(b) residuals using the nonzero dc gain force to velocity modal system.
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5.0 PARAMETER UPDATING METHODS

As described in chapter 4, the input to the modal system is unknown, but its

frequency characteristics are known and the input is always present. It is also not

directly measurable by the sensors. The nonGaussian nature of the stochastic FM

input signal is modeled using the bi and Si parameters of the Gaussian sum signal

model. These parameters are closely related to the amplitude of this signal, due to

the nature of its probability density function (4.2.10). Two of the bi bias terms are

equal to the positive and negative peak amplitudes of the FM signal, with small

corresponding variances. The Si term associated with the bi = 0 bias term has a

value of roughly (!A.) 2 , where A. is the peak value of the input.

The stochastic FM signals used in the simulation examples in chapter 4 had

constant amplitudes. In practice, the amplitude may shift over a period of time.

For good performance under these conditions, the MGS adaptive filter must have

some approximate knowledge of the amplitude of the FM signal in order to update

the bi and Si parameters. Two methods of updating the parameters of the MGS

adaptive filter are described in this chapter. One method involves processing the

measurement residual of the filter incorporating the bi = 0 (zero-bias) term. The

second method involves the use of a Gaussian double-sum to detect a shift in
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I

amplitude. A simulation example is used to examine the performance of these two

I methods.

I
I 5.1 Zero-Bias Measurement Residual Method

One method of updating the bi and Si parameters of the MGS adaptive filter

involves processing the measurement residual of the filter in the parallel bank of

Kalman filters incorporating the bi = 0 (zero-bias) term. Using the modal system

model of chapter 4 and the MGS adaptive filter equations of Table 3, the ith

measurement residual is

rk+, = Zk+1 - Dbi - H(' I + Pbi) (5.1.1)

For notational clarity, set i = 0 and bo = 0 in (5.1.1) to produce the zero-bias

measurement residual

Irk+1 = zk+1 - H(5.1.2)I
Substituting measurement equation (4.1.2) at time iteration k+1 into (5.1.2) givesI

I rk+1 = Hxk+l + Duk+l + Vk+1 - H(5.1.3)

I and substituting plant equation (4.1.1) into (5.1.3) gives

1rk+, = H($tXk + Juk + %kWk) + Duk+, + Vk+l - Hto (5.1.4)
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Rearranging (5.1.4) produces

1rk4l = H'P(xk - 4k) + Hruk + Duk+l + Hqwk + Vk+l (5.1.5)

INow, assuming that the input signal Uk is much larger than both Wk and vk+1 such

that these two terms can be neglected, assuming that the input signal changes

slowly enough such that Uk is approximately equal to uk+l, and setting the error of

the zero-bias filter to be e° = (Xk - 4), r°+1 of (5.1.5) becomes approximately equal

I to

I r°+1~0 HteO + (Hr + D)uk (5.1.6)

I
Premultiplying both sides of (5.1.6) by the inverse of (Hr + D) if (HI + D) is

Isquare, or by its pseudo-inverse if non-square, and taking the expected value, the

zero-bias measurement residual is processed as

Uk+1 = (Hr + D)-lE[r°+il _ (Hr + D)-1 HE[e'] + E[u.] (5.1.7)

Assuming that the expected value of the error is E[e°] = 0, and given that

E[uk] = Uk, the processed zero-bias measurement residual is approximately equal to

the input signal

SUk+i u (5.1.8)

I
Information contained in k+1 is used to periodically update the bi and S i

1parameters of the MGS adaptive filter. The zero-bias residual (5.1.2) is computed

SPARAMETE UPDATING MEMODS 109

I



and stored at each iteration. After n iterations, the residual sequence is processed

using (5.1.7), producing (5.1.8). The positive and negative peak values of (5.1.8)

are found from the sequence, and the power of the sequence is calculated. A

combination of these values is used to update the bi and Si parameters in order to

reduce errors related to the assumptions used in the development of (5.1.8). Due

to the sinusoidal nature of the input signal, the b1 (negative-bias) and b2 (positive-

bias) parameters can be updated using

bI = /Pn - (1 - #),42P 1 , (5.1.9)

b2 = /PP + (1 - /),42P 8 ,, (5.1.10)

where Pn is the negative peak value of the sequence, PP is the positive peak value

of the sequence, P,in is the power of the sequence, and #3 is a weighting factor

between zero and one. Once b2 (5.1.10) is updated, the S 3 (variance of the zero-

bias filter) parameter is updated using

S 3= (0.4 b2)2  (5.1.11)

After all the parameters are updated, the sequence is cleared and a new sequence is

initiated for the next n-sample update.

A simulation example illustrating the use of the zero-bias measurement

residual method of updating the bi and Si parameters is now given. A modified

first-order discrete-time system from [60] is used, given by

Xk+1 = 41Z k + Fuk + IQWk (5.1.12)

=Zk= Hxk + Duk+ vk (5.1.13)
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with values

1 = 0.7 r = 1.o 4 = 1.0 H = 0.5 D = 2.0 (5.1.14)

The plant noise Wk is zero-mean white Gaussian with covariance Q = 0.05, and is

uncorrelated with measurement noise vk, which is also zero-mean white Gaussian

with covariance R = 0.05.

The nonGaussian stochastic FM input signal (4.2.9) in this example has an

I amplitude of A. = 5 for the first 60 iterations and an amplitude of A. = 2 for the

remaining 140 iterations. The input is modeled using the Gaussian sum signal

model described in section 4.1

Uk = bk + nk (5.1.15)

Three filters of the form found in Table 3 are used in the simulation. The initial bi

and Si parameters for the three filters are

I b 1 = -5 b2 = 5 b3 = 0 (5.1.16)

S = 0.04 S2 = 0.04 S3 = 4.28 (5.1.17)

I The MGS adaptive filter is initialized with equally-valued weighting terms

wj - , for j = 1,2,3 (5.1.18)

I
A Markov transition probability matrix 06s, consisting of 0 elements, is

configured with a high probability that the bias term does not switch from one
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I
value to another, and a low probability that the bias term does switch, such asI

r.90 .05 .05 1
bS- .0 . 05 (5.1.19)L .05 .05 .90

The initial values of the state, state estimate, and error covariance for the MGS

adaptive filter are

i x0 = 0 i0 = 16 P0 = 10000 (5.1.20)

Figure 22 compares the stochastic FM signal with the processed zero-bias

measurement residual (5.1.8). The two are quite similar in appearance. Figure 23a

shows the state Xk+1 and the state estimate ik+j without using the parameter

updating method. The initial estimates are good since the parameters are properly

matched to the input. However, after the input switches amplitude from A. = 5 to

I Au = 2, the estimates degrade since the parameters are now mismatched. Figure

24a shows the state Xk+1 and the state estimate !k+I using the parameter updating

method every 30 iterations. The initial estimates track well. Then the estimator

goes through a period of learning a new set of parameter values as the amplitude of

I the input changes. Once the correct parameters are found, the estimator tracks

with minimal error. Figure 24a shows the weighting terms of the MGS adaptive

filter with no parameter updating, and Figure 24b shows the weighting terms of the

MGS adaptive filter with parameter updating. Note how only the MGS filter with

parameter updating develops proper weighting terms for the estimates during the

time the signal has an amplitude of A. =2.
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Figure 23. (a) State and state estimate with no parameter updating, (b) state and

state estimate using zero-bias measurement residual parameter updating method.
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Figure 24. (a) Weighting terms with no parameter updating, (b) weighting terms
using zero-bias measurement residual parameter updating method.
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5.2 Gaussian Double-Sum Method

A second method of updating the parameters of the MGS adaptive filter

involves the use of a Gaussian double-sum to detect a shift in amplitude. The

nonGaussian signal model (5.1.12) has a Gaussian sum probability density function

of the formI
M

p(u) = P,N[b,,Si (5.2.1)

3 Now, a new nonGaussian input signal model is generated by multiplying the

original model by a constant gain, producingI
s = Au = A(b + n) (5.2.2)

The gain A is a semi-Markov process with values randomly selected from a fixed

set of discrete values, characterized by a delta probability density function

p(A) = E P4 (A- Aj) (5.2.3)
I j=1

with

PR = 1; P4>0 for j = 1,2,...,N (5.2.4)

This process can be thought of as a randomly-switching gain, each gain value Aj

having probability P-4. It is assumed that A and u are statistically independent

random processes.
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The probability density function of the new nonGaussian input signal model

(5.2.2) is found using a general result from [61]

I~0 p1)= pU,(sIA)PA(A)dA (5.2.5)

substituting (5.2.3)-into (5.2.5) gives

00 N
p~s =J p.(s/A) EP-'6(A - Aj)dA (5.2.6)

Interchanging integration and summation

p(S) = L PJ [ - -p,(s/A)6(A - A,)dA] (5.2.7)j=1 I0 A1

Using the sifting property of the delta function 154)

f f(a) = f f(x)bGr - a)dx (5.2.8)

the integral of (5.2.7) is evaluated as

p(S) = [IA pu(s/Aj)] (5.2.9)
j=1 j j

The Gaussian density N[bi,S,] of (5.2.1) has the form

I (u,-,)
2

I e -2iS, [ (5.2.10)
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Solving (5.2.2) for u = s/Aj and substituting into (5.2.10) produces

N[b, S,] = e (5.1.11)

and rearranging the exponent gives

J [(s- Ajbi)2-]

i N[b,S] = 1 e ' ; (5.2.12)

Combining (5.2.12) and (5.2.1) and substituting into (5.2.9) produces

1 - Ajbi)2

p(S) pA 1 P' e (5.2.13)j=1 J Trlj~

or in abbreviated notation

M 
N

p(s) = E PiP" N[Ajb,,A S,j (5.2.14)
i---1 3=l

Thus, the nonGaussian density function of s can be modeled as the Gaussian

double-sum (5.2.14). The A, parameter is used to account for any shift in the

amplitude of the actual nonGaussian input signal. Several values of A, are selected

to cover a range of possible input amplitudes. If the actual amplitude changes, the

MGS algorithm will react by selecting the filters using the most properly matched

A, value. However, a total of MN filters is now required to implement the MGS
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algorithm, rather than only M filters previously required. Following a similar

development given in chapter 3, the modified Gaussian double-sum (MGDS)

adaptive filter equations for a modal system are summarized in Table 9. A block

diagram of the MGDS adaptive filter is shown in Figure 25.

The simulation example of section 5.1 will be used again, this time illustrating

the use of the Gaussian double-sum method of updating the MGS adaptive filter

parameters. Three bi and Si parameter values are used again

b, = -1 b2 = 1 b3 = 0 (5.2.15)

S1 = 0.04 S2 = 0.04 S3 = 0.16 (5.2.16)

In effect, these parameters remain fixed. Choosing the proper Aj parameter causes

the MGDS adaptive filter values to change. The S3 parameter is set to (2)2 = 0.16

to allow for the correct scaling when multiplied by Aj. The S1 and S2 values are

not scaled by A since they model the steep peaks at either end of the stochastic

FM probability density function (4.2.10). These two parameters properly model

these peaks for all amplitude values.

Two A, values are used in the MGDS adaptive filter to cover the range of the

input signal amplitudes used in the simulation. They are

A 1 = 2 A2 = 5 (5.2.17)

The MGDS adaptive filter is initialized with equally-valued weighting terms

w j  for i = 1,2,3 and j=1,2 (5.2.18)
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Table 9.

Modified Gaussian double-sum adaptive filter equations for a modal system.

System: Xk+1 = 4Xk + rSk + 'PWk

Zk = HX k + Dsk + Vk

Sk = Ak(bk + nk)

M N

Overall estimate: = i _ p(bi,Si, Aj I Zk+1)
Ij=

Kalman filter equation:

4.7J+1 = c'kJ + rAjbi + g kj+l[Zk+l - DAAb - g(-ti j + rA~b,)]

Kalman gain equations: Mkj+ = Op +AsIr T + rI'SI'

K'kt+l = Msk3+,H T (HM 1+,H' + DA}SjDT + R)-'

pik+1 = (I- KWk+IH)Mk+l

Weighting term:

wtvJ+ = p(b,,S,,A, I Zk+i) = C',+lp(zk+l I b, S,, A1, _ S k
0=l 0=1

with

p(zk+l I b, S,, A, Zk) = N[H(tikJ + rAjb,) + DAjb,, HM+,H T + DASiDT + R]

3S0" = p(bk+l = b, Sk+1 = Si bk = b, Sk = S.)

0 = p(Ak+1 = Aj I Ak = A,)

Wk = p(bk = b., Sk = S., Ak = A, Zk)

M N

and scale factor C'+, such that j E Wt+, =1
i=1 j=1
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Two Markov transition probability matrices, 0" and %9, are used in the MGS

adaptive filter, given by

= .90 .05 .05 [ 5..15
I .05 .95e =. .05 .90 .05 = .9 .0 (5.2.19)

.05 .05 .90

Figure 26a shows the state Xk+l and the same state estimate Xk+l generated

previously without parameter updating. Figure 26b shows the state Xk+1 and the

state estimate ik+1 using the Gaussian double-sum parameter updating method.

The MGDS estimates track well throughout the simulation, without any noticeable

learning time.

Figure 27a shows weighting terms 1-3 of the MGDS adaptive filter with

A = 2, and Figure 27b shows weighting terms 4-6 with Aj = 5. The input signal

starts out with an amplitude of A. = 5, so weighting terms 4-6 initially are in

effect. After the amplitude switches to A. = 2, weighting terms 1-3 take over, with

one exception. Weight 3 (for bi = 0) should be larger than weight 6 (also for bi = 0)

since A, = 2 currently matches the actual input amplitude. However, the

measurement residuals for corresponding filters 3 and 6 are equal, because their bi

terms are each zero. This causes the difference in their Si variance terms to be the

deciding factor in calculating the weights. The Gaussian density function in Table

9 used to calculate the weights has a larger variance for weight 6 (Aj = 5) than for

weight 3 (Aj = 2). Therefore, the probability calculated for weight 6 will be larger

than the probability calculated for weight 3, so that weight 6 governs the overall

state estimate more so than weight 3.
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Figure 26. (a) State and state estimate with no parameter updating, (b) state and

state estimate using Gaussian double-sum parameter updating method.
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Figure 27. (a) Weighting terms 1-3 with A, = 2,

(b) weighting terms 4-6 with A. = 5.
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6.0 CONCLUSIONS

This investigation is concerned with effective state estimation of a system

driven by an unknown nonGaussian input with additive white Gaussian noise, and

observed by measurements containing feedthrough of the same nonGaussian input

and corrupted by additional white Gaussian noise. A Gaussian sum (GS) approach

has previously been developed [6-8] which can cope with the nonGaussian nature of

the input signal. Due to a serious growing memory problem in this approach, a

modified Gaussian sum (MGS) estimation technique is developed that avoids the

growing memory problem while providing effective state estimation. Several

differences between the MGS and GS algorithms are examined, showing the MGS

algorithm to be a better performer.

An MGS adaptive filter is derived for a general system and a modal system,

with simulation examples performed using a nonGaussian input signal. The modal

system simulation results are compared to those produced from an augmented

Kalman filter based on an augmented modal system model assuming a narrowband

Gaussian input signal. The results show that the MGS adaptive filter provides

better estimates than the augmented Kalman filter.

A necessary condition for effective MGS estimation is derived, namely that the
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system must have a nonzero dc gain. Three alternate estimation procedures are

developed to compensate for situations when this condition is not satisfied. The

alternate MGS adaptive filters are simulated and their performance results are

analyzed and compared.

Two methods of monitoring and updating key parameters of the MGS filter

are developed. One is the zero-bias measurement residual method and the second

is the Gaussian double-sum method. Simulation results are analyzed to investigate

the performance of these methods, with the Gaussian double-sum method proving

to be a better performer at the expense of increased computational burden.

Several contributions to the field of applied estimation theory are made from

this investigation. These include:

1. The development of a modified Gaussian sum algorithm with nongrowing

memory based on a nonGaussian signal model with a Gaussian sum

probability density function. Parameters from this model are used directly in

the modified Gaussian sum adaptive filter structure.

2. A comparison between the GS filter of [6] and the MGS adaptive filter. The

two are similar, but the comparison shows the MGS adaptive filter to be a

good improvement to the GS filter.

3. An examination of a necessary condition for effective MGS estimation. This

condition provides a simple test to determine if the MGS adaptive filter will

I work properly for a given system.

4. An alternate configuration of the MGS adaptive filter when the necessary
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condition of 3 above is not met. This configuration is applied in several ways,

and each is evaluated on a performance basis.

5. Two methods of monitoring and updating key parameters of the MGS

adaptive filter. These allow the estimator to react to changes in the input

signal level which cause the signal to be nonstationary over long periods of

time.

Some suggested directions for future development include a closer examination

of the assumptions used in the MGS algorithm to alleviate the increasing

computational and storage requirements of the growing memory GS algorithm,

applying the MGS algorithm to a larger variety of nonGaussian input signals, and

examining how to implement the algorithm in the case of nonlinear systems with

nonGaussian inputs.
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APPENDIX AI

The transfer matrix from actuator force inputs to sensor acceleration outputs

for the modal model described in [1] is

G(s) = s= + C- ;O;T (A.1)

where

w m is the total number of modeled (complex) modes

Ai  is the ith eigenvalue of the transfer matrix

0i is the th mode shape vector (eigenvector)

ci is the ith modal participation factor

An equivalent continuous-time state representation of (A.1) has the form

i(t) = Ax(t) + Bu(t) (A.2)

y(t) = Cx(t) + Du(t) (A.3)

where
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IT
X(t)[q,(t) 41(t) ... q.(t) 4.(t)]I (A.4)

are the modal positions and velocities, u(t) is the m-length vector of actuator input

forces, and y(t) is the m-length vector of accelerations at sensor grid points.

Clearly, the dc gain of (A.1) is zero since for s = 0, G(s) = 0. Differentiating

(A.1) once with respect to s removes the s in front of the summation, producing a

new transfer matrix from actuator force inputs to sensor velocity outputs. This

new transfer matrix has a nonzero dc gain. The discrete-time equations (4.1.1) and

(4.1.2) are generated using a zero-order-hold model. Therefore, the discrete-time dc

gain (4.2.4) from uk to z k is equal to the continuous-time dc gain.

The A, B, C, and D matrices of the state space representation of the force to

acceleration transfer matrix are computed as follows. Define

A -diag{A, A ,. •., AM, MA*

C diag{cl, c ,.. ., cm, c,}

0- 1 "'" em

Then

A=A, B=AC2T, C =45C2 , D= C&T  (A.5)

The A, B, C, and D matrices of the state space representation of the force to

velocity transfer matrix are

1 1

A = A, B = AC 20, C= C2A - 1 , D =0 (A.6)
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The A and B matrices of (A.6) are the same as those from (A.5). This allows the

states (A.4) to remain unchanged when either acceleration or velocity outputs are

used.

Numerical values for the parameters in (A.5) and (A.6) are generated using

the algorithm below. In these equations the subscript i represents the

corresponding mode number, and values are generated for i = 1,2,..., m. The

eigenvalues are given by

Ai = -a , jWi (A.7)

where the a i are randomly selected with uniform distributions over three intervals:

[1,2], [2,5], and [5,15], generally with the highest frequency of occurrence in [1,21,

followed by [5,15], and then by [2,5]. The w, are given by

Wi = 2rfi (A.8)

fi = 100 e - ° '1(Q - 1) (A.9)

I
The eigenfunctions are given byI

e jkix (A.10)I €,(xr) = (A.10

where x is the m x 1 vector of grid point locations distributed over a length of 70

meters, and

ki = 0 (A.11)

Vi = 3000 e- °0 21 i  (A.12)
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The magnitudes of the modal participation factors are given by

[ci[ 100 e"° 1(t i - 20)  (A.13)

and the phase angles are

Icj= random values, uniformly distributed on the interval [0,27r] (A.14)

Using the algorithm above, the parameters of (A.5) and (A.6) are completely

specified by ai, x, and Lcj for i = 1,2,..., m and some positive integer m.
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est iiiat. is dleveloped Aong tihe LineVS Of t- ie lNC Kidllll Id ate et-Stinat jolt1. 1tS1ttt,

(fiiasi-illearizatioii instead of t lie Tavloi series liiiearizat ou itiself In Extended IKalmnt

Filters. It is denioust rated that t his ne9w mtet hod. out perforiis tile extenided IKalinain

fltter Ini ternis of thle Inea n-slia re i-Or oftO tli 4ateI estimtate. his est imlator cai

brC lit-er it.iv for state estimiatijon for those cases whereT' theC ('XtelldCe Kalmuan

fitter loesiOt. coniverge. M oreover fillit ' jiel o I is Ii rccilv a1 plicabtle to iC('dba.(k

svst emls with m ultiple ntilinearies antd stochiast ic ~ lit m-a tice,.



1.Introdluctionl

Linear models are often used by engineers to simplify the analysis and desigil

process for physicalI systenms. but ievita I lY non Ii ,iearities appear when hie miodel ks

refined. and in many ca-ses a linear model Is too crude to be of use. Conseq i ellt.ly.

met-hodIs fo~r working wit nonlinetar svst emis are alasof great i nterest.

For on-line systen identificationi andl control it Is custontary to use ant est imator

to provide good state estimlates fromt the available noise Corrupted measureiments.

The past quiarter ceittury has wit tmessed I i ai approaches to this problemi, . m u tst

of thle approaches resulted in iters with gIrowing uiemory or of intihite dimension or

wich were simlplY cn11iiI1ersomwe com pillal ionll 1. ie extemhded lKalmuua-u, filler (FAY)

flVoIve I as a genieral1 standard a pproachlit) t his prob~lem.

Alt hough state estimation of linear svsteiiis has b~eein thoroughly stutdied aimd

'lociunt ed. Corresponuding .siliflies br01 iluJniiliar svst eims are still going onl. lIII hlit

nlajoritv of theseq( stu1dies attenhlpts have k~een niade to linearize or quasi- linearize the

iiniiar mnodel so as to aplYl thle linear approaches. Ratimiath and Paynter [i]J used

flie idea of a scaling transformation to redutce the nonlinear p~rolemlf to an ol)vioullN

,olvale form. For examiple. using the chiange of variables .y/y. the nionlinear

lbccati equation:

(-at 6e miade equivalent to t lif, bijf fi vl~

constirlirt an applrop~riate t ranstorunat lOll.

Stat.ist ica~l linmearzationi is allotlie, approac'h tHi. has beeni proposed to deal willi

iiouihiiuear systems. Cranidall [21 expla ills t hat file idea Is to r-eplace thle 11011 i til-a



vsteni eqIuationl by all equiivalent i near equation Involving a pa rainet er wh ichl Is

,,electedl to nminimmze t lie estimitat ion error. Thme key, step Is thle eva lmat ion olst at isi ica I

expefct at ions of Cert ain functions~ of tilie nonlinear response. Bunt iiii any~ 'ase ihis

gene-ra Iapjproacii on lv works well form l Sufiui ffrteaiti es. [x eisoms of thle-otat ist ma

liniearization tchliqueit were giveni hv Hedrlick allid .Xslan (3 all( B leaman and Hledrick

Navin mm5] discussed a muodiflied version of tile discret e IKaan lilter for tile non-

linear case. The essetit ial id.ea is to have it nonlinear transiltion inatrix A for the

coi iotts case. develop tile equi iva let Idiscret e fria misit ionl in a t ix 1si mug tile firist I wo

ternis of the Taylor serics expansion otfX) At anmd complete the algorim along t he

line-, of line~ar Nalmait fltter.

1 Silg t lie sam 1 led -dat a It-e liit pe presenited hY I Va\ttiLa udinigliam (6. Va i autdiing-

hiam andt Moospf I 1 andI Moos.e ant I LawonZOJJ . DhI iiira [SJI) lat ei -ttiidled variations"

of esi iiuiators Siugrested bv Ilie .iMipNat rix minia omthod. Time .Jtmu 1 Matrix

iiodelItng mlet hod has.- beenl s~cesi viie' to model large '-cale svs e iitsh as

lie U.'S. Nay(7nIo., in? 11faw fOI S~ m(7 '! S ) cm~it a iiig as ma uiv as 11i1f ii najOr,

itori-liiieari ties. Both thle si uiulaI o- I edhmiqiue awl thle rpe;ult i ig m~u iinear esti miator

are discussed inl detail Ii suLIse(llieiit sect ionls.

-Sect ion 2A presenits filie tioniliiear ,a iletI-ialr .iitia.l;~i'm lIu .I ~I wi b

Section 2B3 in which the nionlinear '-1.ttumdi i 'm * hmu'j'n- 1- 1-

soime exampi;le siimtlat Wwmi d iI 'i1 -. I ! .I1\ i1 ~ '

2. A- Swuipl(ed-EData Siiiiiiiarili Mcrivifdv b"1 1 i r;t c E-rimatrl iii

(d Noulinear Stodiasti(- bSY-tiii,

A. Introductioni

.... .. ...



Starting with a basic state variable formulation tot a plaIt model, a nonlinear

sampled data simulation method called the .Jumlp Matrix Teclniq,,e (.JIT will he

introduced. Tile noulinear system simulation and design of the estimator uing the

.jMT will thus form a. major part of this section. The complete development of tihe

technique is given in (71.L01.

'ousider a general set of state eqations describing a liuear systel

.i' = A.r + Bt Plant lodel ()

! = ('.r L) Output Model (2)

If tile sYstem input is sampled at every T :secoiids and held constant over the time

interval T. equation we have

.t.+ ) = +x.rt tk+ ri(to. GO)

!l tO,. = ( '.Il t ) + 0 1W tO . ( |)

vihere (P ald 1' are delined as follows

+ 4- T  I + .41' + .4'1'"/2! + 5. .)* (5
I ' T B/ T+T./!+T.'T+ B 6F = eABd.\ = (T + T 2 .A/2! + T3 .A2 /3! + "t. (6)

Thus equation (3) defines the discrete I ine eqIiuivalent of I l[it- ,o01litivus I Me SVs-

le to g ive n b y ( la .b)). III a d d itio n . t h e s se e .f . , l l ,ql 1- 1 I M , 0 )t .. ., .i . , - m 111.,v, 1; , 411 , 1

for I he linear tim e invarlant s v ,.iii. \,. ',l .... ,, .. 1-111 .1,,,t, ,, , .... ,1111-i,-, IIC I.

.., lss\.sl c ; ils I l .1 f w s . ,l l'r, 1,[)III III-~, I lic.- 1, 1, lfl ' l. 111 ,l/-1-. I -.

1k.+, the linear siibsst mi prol ,i "i, uk' , ''io ,,rdiliv li I*;,i -' 'ii..\i th% AI - , lli'.

iistait I = t. tihe uoimlinearity o-,(pli, t V illate'd awld then Ime'i, ,',nistanlt ,V'r the

sa nipling period. One implicit assimption in this analvsis is that the noitliniea iities

are metmoryless. Over the sampling period the caliping of tile mnli ilearitv oull



arts as an ideal integration of anl Inp)itt consist ing of a 'Zoije,; otfW 1)11 plse. hel ('laili)

t)IIpit jI I s t lien cot isidlerefl as at extra state va Ut l,4le of I l ie ssi ei. Tili t I e niot, Ii iiea

vte I Iloel(IasIiila . x-tellduring thle sample Interval with a iioliilmear 111iiii)

ill the sYstemn state at thle sampling mInstant. This is) itlitst rated li Fig.. .

For a small time Interval. t his Ihect)Ies anl acciirate piece Wise cowstant alppIox_

ination of thle actunal noniiiearitY. lit t eriis of a set (A state equtatins. thle svsteiu

1 ii iI he .J,\ [ )ecolitic.'

Here .) is a nionlintear iiiat rix operator. act ina oni the 't ate vector xit-) and

wl ereferred to as lie jutnp nia rix or voctor.. At Ilie, -anipliiig instant. onkl thle

1i10iii1i%-ar, stale vailitlbles aire dlflyig(d inslant I v: Owim lillar aahS iat jwpt owsl ;unl.

which Is ill direct contrast withI keeping lie non linea r -t at variablde constant over thle

-anlIling p~eriodl . As anl examp~le. consider the Ys'tem defined bY thle eclitat ion

.- + + 4.1 *r i = 0)

Imloosi g tlit, Iw\o tionliiievari-ies as sl ate va ria 1)1(.. lie 't alIe eul srat .ait lhe 'ci 11p

as tolows

\\ri t lilut, it ill a matlI fi Wh ruu

1) 0



x(t) _
I N[.] y(t) :

x(t) T" N[]" LiP -yt

Ii 1r, I: I~tll ''l(41 S ,llilll, allI ('lam pl I't,,r a Nt,ullinv,'aril "



where at t - t k the nonlinear (.ulp) update is given by

,x,,t .) A l l#.).t _ (1

k.tt. = .r -().,'( - t) t

B. Estimator Design

On the basis of (he theorY developed in Sectioti 2A. the llolinear stochastic system

cal )e modeled as

Nonlinear .Jump: ,11 = I(

Linear Projection : x = r + [,1. + %'y-. tk. < t < t4+i

MIeasurement:- Ir+ + L. = k

The system noise 11'. an, InI.-asireilent noise i',. are statistically iudepel, lelt.

uncorrelated. gaussian randomi noises with covariance matrices Q and R respectivev.

luhl i Iivelv. tile estimiated sta.te .iust alter ile saulpliig ist a itt. shouild be pIroporl imual

to the uoilinear update of.state )efore tle sauil)ling instant and also (he Inleast.ireiiit

iade a-t the sa.ipling iustant. So it is assumed that tile filter has the following fort:

.'+ O. I(i'-) + A_+  (12)
k kk

where 0 and A are weighting natrices I hat will i,-, De,-,ill, I le ,urialfio,,

of the sanmple interval T . I ill,'r II,;,v, . ... ,, , . , [;, , . iI,I ,, .wit h Ill,.

iutersaulpl. response giv,'', 1,-v

- [ "4-

Defining tie filler error as -+ 4 .+1 +l - al, sit k i tiing tlil \alues tl(,ilt dl,,

we have

t+ : (.r +!) - O./t.i'+) - 4II.I(.r" 1 ) + rt,+i] (14

7



Taking tile statistical expectation

E[+]= ii - ',,)E[.J(.,'4) - (I - _XH)- e. -L, )] ((ts)

Fo an untbiased estimator. we want. iA. - k as, --- C. So if 0 = (I-

..H) tlhen as A- - o. E'[e-.+l] - 0. Thus equation (15) reduces to

r[(k+,] = (I- AI/)I:.(xT+,) - .-All+,)] (16)

The filter equation (12) can now be rewritten as

,. = .( . )- - H.J(.i )] 117)

which is similar to the stat.e estimate iipdate equation of the hasic exteided Kalmuan

filter.

The problem now Is to evaluate the statistical expectation of the term [J(.rni+ ) -

.• *'+t )] Since .J(.) is a. notilinear opierator. it cannot I,, Iirec lY interriallge I with

expectation. Lauzon. Moose [7]. used the idea of a time varying matrix a4+1 such

t hats

[J(.,.4+) - .I(.i+, )] = ,,k+,[,- - (18)

Dett'1iniIing 1k+1 by directi anipila (ionf II(-he definition is impossil,le as the

value of the actual state is not known at each i eration. \V- ,,i.i'li-' nalrix

,,4.+, to be the J lcobit im an ri., ,1 .l *. , l;,, ,..I ., -./I. H, , I- i, I ,' ' +9

lying iii the closed interval ['7+I . 7 - ] -&,, I1,. I -. V + ,I1 ,,-I i ' '11 Ill I h,.

kiiowled e. ,,t" *.'+ .x But siw,'- 1i, . 1im, ,. ,' ,nleia .. w.. . (!, ji ,.;,;,d '"e -- 11i'i" as

A,' - x .dihcreflOre the mjemri-val,' J. ~ i ;l!r, i;;t I I to I, I- I ; I I, ,I xaim.. 4- 1

Proceeditig with the estimiator fev,hli iol . t i.. .*':pf-ct,'I v;Il. ,,II lie vI I 1,... t i vrti, r r,

given by equation (16) becomes

= I - ,,I)nI,+,(,E[tA.] (tg)

. ,,. • ,Is



a id by making use of equation (I 1) and ([S) the total error expressiol cait Ihe writ tell

as

= (I - A.H),L.+('t-k + %Y.uk) - At'k+, (20)

The error covariance matrix Pk.+,. defined as Eftk+jet+1J, is determined using equa-

t ion (20).

Pk+I = (I - AII(k+(- HT...T) + .R.T (21)

Deliniug

.+t = P4.,O . + kpQ %pT (22)

a lid

'tI,+= (23)

Equtalion (21) can be written as

P4.+1 = (I - AI)Hl 4 (l - Hr&) ± _4AR-_ r  (24)

1i1 order to deteriniie the optimal filter gain. the trace of the error covariance matrix

P+1 is minimized. Differentiating C' i tr(P4-.+ ) with respect to A and setting the

result equal to zero yields the optimial gain matrix

_A'= 'V+.,Hr[I-t.j I f + R]-' (25.')

This expression looks very similar tle k+,Iii ,,, :,I,, ,',i,;i , i . ,,,i,, .5" i, 1hc

tim e varying gain iv,. - . , , , .rI , , ,I ,, ,,. ,i . b, ;,.

/t= i/1- i// u j+4 t - I1_1 /,u:{2;

wh I lell redc es to I lI- 1'iefmili.'r .xII#st it

1I+ = 0 - !\' ,l If0.+I (27)

This completes the design of lie est iiator. Summarizing t lie filter equations

9



Linear Prediction: i-kxl + [Ulk

Notilinear Update: *J II T. ) + AK+I~ (~ - 1.( +

Gain (!alculatiloi: JKk+I .11k-I 1fr[H3kIHIT + RV-'

( ovajilanice I rf)(ate = -k. I~k f).IT+I

'1i1+ 1  "[P. + %,Qqpr1(,T*

3. Estimator Analysis

A. Jut roductiou.

Iit sec I on 2. tbe sjimuil at itmiofm I I ,Ihi- (-, Il I, isinig I I e JT Innip N Iat rix Te-t-eitIt [Ile

.1NIT) Nvas first (I irttsecl ad (t I e toIitI'q nip tised to lev- In 1) an it tI Ilat or for non I lnear

xvSYlcIlls. IllI-Ills section Iwo SpIi i ollieiv* S.VSls ate- coii"idevet . filte I)lIIl)(Jse

of Ilust rat ing tile estimator ulesigii . Th liirst 'Yst eli chose-lI replresenits tlie mnotion

of a particle under nronlinear damiping. Vi~n djer )j equi~t ionl call be9 ursed to rIrodel

1-4Chi a. svst ci. Thre second examIIple considers a feedback coiit rol svstemt cont aining

an internal saturating nonlinearity, Thle sYstem is Iflee bY tile presece of

wi(Ielbaud Cra-tissiaiu (list t rIba nes and additive ( 'aitsslal Ii iiuasilIreiiieit error'.

B3. VCan (ter Pol's Equati"on

T'he first exaniple to be -i1I1''1 i 1 nnI''1 "I ).-l~ , 11~~f I.

.\ fuinil orI(ct t\a ii c ato~ 'It-1piaf1- i1on1411 diiei qPa ,tisai1111"td ijnt u' l 1i-

of matY it illiw r ef~illow call 1 0'fl ' ' ,l ~l



written as

.' - x -. ")i+ 9.v= t WI

Setting 1Ij) tile ;tate e(q lations
X I = "1 ." 1  =Y

X-2  1  :2 = -.

X13 = -

Writing it in a matrix form

[~ (29)1 u

+ 0

,.l(tk..,. I+)= .( ,.itt)) - [- 1- (:10)

The kluck diagram for tile sVstem is glvcti in lig. 2. The svsteii was sinulated for

different valties of t i.e. 0.5. ad 2.1). ,v.'d m I IIi ja W1I abl d ate est i a 0ion was

carried out for various values of 7' . t ie posit ion measurvinveut error variance. and 17-..

tlie variance of w( t ). Table shows the total inean square ,er'or between tie estinaated

and the real state values for different noise levels for the two estimators. Table I gives

a. comiparisoni of the execution times for the two techniques. Ihe numbers represent

time in insec for 1000 iterations. The simulations were carriedl out on a SI N :3/H[0

machine using the Motorola 68881 floatin, point coprocv-cwl,.

For the various values otf Y t-m i, Ii, ,w 'i i,,,,1 , . ,, , .. . he

miean square error in the.. . I I I.-,, ,'f MF,,, . ,,,r Le, tr IKI.

Th 1IIll I li I T llie t il's Ive l t3h ' , Il al;,fi III I, , i, * , -d fV,.. t I,- f oIr ;',,'". Ih,"

di l'itrelice I., b lsicalk '111P I In avc "(,1 14ue ' l -1 '11 ,1 1111 1 CI ~ i 111 (11 I i I(C t ' 114 Cli-

liiearities and he mce lIhe fotII 1,uiAl II),Is i111 a-,-, .4 lH .-M F ti ,,r al I ,- ,r I I-ig lr

order system than tile one used in the EKF case. But if )erformance. detinled as tile

iea i-square-error, is the criteria. Ilie JNi'[ estimator ' laL'lv out ier'foi-'is fihe EKF

It



Figure~ 2: Block Dia~grami for Van der Pi's Equtatilul
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Exteuded Kahuan .J NIT Estimator
Filter

(7, = U.0 1
= 0.01 0. 277 U.058293

'7 0.1
00 0.-17089 0.34474

1 = 0.1

7, 0.1 0.67396 0.34524

= 1.0 1.7192 1.336
17 , = 0 .t2

(T, = 1.0

(2 1.0 3.17196 1.34143

Table 1: Est.imator mean square error. ['K F vs .INIT

Extended Kalman JNIT Estimator
Filter

(,. = 0.010.01 6.1 10.5f.=0.0t
e7. 0.1 III

7% 0.01 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

a2 =0.1

'7 1 .0

.7 .1t.
(
2  = 1.0

Table 2: Execlt ion till,s ,IM S111) 3/ 11). ENF v- .INIT
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and shows no tendency for filter divergence as is the case in EKF. The improvemenit

ini the estimator performance far outweighs the increase ill execution time.

All the above simulations were carried out using f = 2.0. Fig. :3. shows the

s'slem state. the EKF estima-te and the .INIT estimate for the above system. (:- 2.0.

,' = 1.0 and ei, = 0.1 were the set of parameters used for the figure. For the initial

part both the estiniated values are the saic but gradually the .JNIT estimate tracks

lit input with smaller error and also with reducing time-lag. The actual system

state variable values were computed using a. different program. instead of the .Junil

simulation theory, ani( the same iteasitrememts were t Ien wsed for bot It tie es IimIaIors

in order to have an unbiased comparison.

C. Non Linear Control Systen

The next. example to be coitsidered is a no llinear Relay (Coutrol System. K*1Io

[9] has provided a discrete lime analYsis for calculation of the unmit slep response

using phase plane trajectories. Here in this section a stochastic model of a nonlinear

saturating amplifier is considered. The control system contains tihe amplifier followed

by a second order Low Pass filter with negative output feedback. The block diagrain

for the system is given in Fig. 4. The system is modeled as follows

= (:11)

., = :qI;

./. .I - " .4'- : '

rFit(. stalt, r~q lationls rall 1114 1 , hr .,.t III) it) 111" mal vi': G',rl II .

(I I 1
-... tI II

w~*ithI

k ) = = (:15)
. ,' A-) - '(tk)+ WOC.)

14



--- JMT
6 --- K

-STATE

94
2

-2 /
4/

0 2 4 6 8 10 12
TIME

Figure 3: Vi de'r I's e~~viaI-iotI. EKF vsJN[T



The systeim simulation and estimation was carried out for [=0.01 sec. ,-. =

anid : - 1. The slope of the saturating animlifier was kept at 10.0. Fig. .5 shows

the system state. EKF and .JMT state estimates for the system. From the figure we

observe that though the .JMT estimate is noisy it still tracks the system state fairly

well. while in the case of EKF the estimate dim'trges after some titme. This further

validates that the JNIT estimator out.performmms the ENF and also cal be used for I Ie

cases where the EKF estimnater fails.

*. Conclusion

A computationally efficient state estimator for uonlinear systems has been devel-

oped. The algorithm has been extensively tested and found to provide excellent state

estiniates for both open-loo) aid clos'd-1001) s-stvils wit-h milediimii to low oitllt

sqignal-to noise ratios and stochastic or determinist ic inputs.

The basic idea, of the procedure involves a sanijlled-data approach and a separat ion

of the linear and nonlinear parts of tile system. During the sample interval. tlie

linear dynamics propagate as expected. but the nonlinear Coml)onent outputs are held

co(stalmt.a until the enlli of the sample interval at which -Ittie they "jlitip" to al upldat.ed

valte. Consequently, the techttique is referred to as the .ilNp Matriy Technique or

.JMT for short. The updating of the states at thme saumple instants illl roduces tile eirect

of I lie itolinear dynamics on tile system. "'n esl imnaor is de, eloped oil i he basis 41"

the predictor-corrector cotiligurat ion.

Tite siructm'e of the esil itia ii- a 1i6 hiii i ,,, I, .. ., \ 1,. 1,1.-v;,It , .il,

miat rix.-1.+. which rept ,,-,on ,t Ill, r'I;ti i, -iI Ii ,v , I'.. fat. , l lll! mol 'rinr

I wlorc mill afi ( th i ti(' li meamimps IlLt' . li Il~ I 'll 11+ 1" ;1lacs il 'a m Iluel iN CVi il1'I1

at i le oIJ-step predicted state estimate. Tl, ',m; -in,.titm " ,t lnft, im't

components is a frequently used method for approximating the nonlinear effects with-

out tidue compittational demands on the aigorithim. Wii h fe on-line cairlatioln of

the Jacobian matrix, the estimator takes on the form of a modified Kalman filter. but

16



w(t)

e(t) Yt

r(t) * 0. I

Figutre -1: M~uck d iaigra i v( Hit- vutl rul ,.vslel wIt a. t sa'~Itural i ig amiiplifietr
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E.. -2
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TIME

I'igitre 5: Noti ILinvar ( ogittol SYStetl. E vs .INiT



is distinct from and is shown to he superior to the Extended Kalman filter.

Two examples of stochastic nonlinear systems have been presented. The first was

Van der Pol's equat. ion illtstrating nonlinear oscillation. In this case I he mean s(Iiare

error of the estimuate was cousistatntlv smaller fbr the .JMT estimator. in comparison to

the EKF. The second was a nonlinear feedback control loop with an internal saturating

gain block. an example of systems extremely difficult to handle by Extended kalnan

filtering techniques. The system was driven by a determinuistic signal modeled by a

unit step and a wideba.nd noise (list m-ilane w(t). In addition. Gaussian measuremuent.

error v(t) was introduced to yi-ld low output sigual to nuoise ratios. In this examiple

the EKF state estimate diverged from the actual state, while the .JMT estimator

provided a close estimate of the system state. The .JNIT estimator performed very

well iii both examples. and in both cases gave better results than the EKF.
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ABSTRACT

Recently, a modal domain optical fiber sensor has been demonstrated
as a sensor in a control system for vibration suppression of a flexible
cantilevered beam. This sensor responds to strain through a mechanical
attachment to the structure. Because this sensor is of the interferometric
type, the output of the sensor has a sinusoidal nonlinearity. For small levels
of strain, the sensor can be operated in its linear region. For large levels of
strain, the detection electronics can be configured to count fringes. In both of
these configurations, the sensor nonlinearity imposes some restrictions on the
performance of the control system. In this paper we investigate the effects of
these sensor nonlinearities on the control system, and identify the region of
linear operation in terms of the optical fiber sensor parameters.
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1. INTRODUCTION

In this paper we are concerned with the design of active control 3
systems for vibration suppression that contain a modal domain optical fiber
sensor. A modal domain optical fiber sensor consists of a coherent light
source (a laser), an optical fiber which responds to a measurand, and a I
detector. By knowing the relationship between the force on the structure and
the output of the optical sensor, this sensor can be incorporated into a
vibration suppression control system for a flexible beam (Cox and Lindner, 3
1991). In order to use such a sensor in a control system, Cox and Lindner
(1991) developed an appropriate model for control system design that
incorporated the following elements. When the optical fiber is attached to a
flexible structure, fin- - applied to the structure will induce a strain in the
optical fiber (Mathews and Sirkis, 1991). (The relationship between the
stress distribution in the host material and the optical fiber is currently an
active area of research.) When the optical waveguide is subjected to strain,
the intensity of the light at the fiber endface changes in a predictable way.
The first model of this effect was reported by Butter and Hocker (1978). This
model was developed further by Sirkis and Haslach (1991). This later work
was extended slightly for modal domain sensors by Reichard and Lindner
1991). Last, the detection electronics (Murphy, et al., (1991)) are included inthe model.

Modal domain optical fiber sensors are of interest for control system
design because they can be configured to have a long gauge length. Recently,
this class of sensors, called spatial filters, have been shown to have certain
advantages when implementing complex control systems (Lindner, et al.,
1990). They can also be configured for optimal measurement of vibrations in U
control systems for suppression of acoustic radiation (Lindner, et al., 1991a,
1991b). Reichard (1991) developed models to characterize fabrication and
modeling errors for modal domain sensor when they are configured as spatial I
filters. Modal domain sensors have also been demonstrated in a control
system for the suppression of acoustic radiation (Clark, et al, 1992). 1

Optical fiber sensors have certain advantages for instrumenting
structural control systems. They are low power, light weight, low mass and
EMI insensitive. These sensor can also be attached to or embedded in a 3
structure. 1

The model of the sensor from strain in the fiber to intensity at the 3
endface of the fiber (sensor output) contains a sinusoidal nonlinearity. Most
of the results reported to date operate this sensor in a range of strain for
which the output is il its linear range. In - irticular, the analysis, design,
and experimental verification by Cox and Lindner (1991) of the vibration
suppression control system for a cantilevered beam emphasized the linear

I See, for example the SPIE Proceedings on Fiber Optic Smart Structures and Skins, I-IV,
1988-1991. 3

2 I
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Iregion of operation of the sensor. In this paper we extend the analysis of the
performance of the control system into the nonlinear region of the modal
domain optical fiber sensor. In addition, we consider an alternative detection
scheme which extends the dynamic range of the sensor. For both
configurations, we investigate the existence of equilibrium points and limit
cycles through a parametric study. We also characterize the distortion at the
output of the sensor introduced by the sensor nonlinearities. Using these
results, a modal domain optical fiber sensor can be sized for a particular
application based on the predicted disturbance levels.

In Section 2 we introduce the model of the sensor and quantify the
open loop distortion introduced by the sine nonlinearity. l.a Section 3 the
effects of the nonlinearities on the closed loop system including the stability
of the additional equilibrium points and limit cycles are investigated. Section
4 has the conclusions.

List of Symbols

1Optical fiber parameters

a - core radius of the optical fiber
nj - index of refraction of the core
n2 - index of refraction of the cladding
X - wavelength of the laser
If - intensity of the light at the fiber endface
r, 0, z - cylindrical coordinate system for the optical fiber
zf - location of the endface of the fiber

Pi- propagation constant of the ith electromagnetic mode
F - phase of the interference pattern in the optical fiber

I - first order approximation of the phase to strain induced by stress

f0 (e *) - Q-point of the sensor

5 fringe frequency,
Lf - fringe length, period associated with the fringe frequ' ncy
S - path of the optical fiber attachment to the structureSyMD(t) output of the sensor in its analog configuration
yFc(t) - output of the sensor in its fringe counting configuration

QFc(A) Quantizer nonlinearity
AFo - Q-point drift of the sensor
Ji ith order Bessel function of the first kind
Pi - power in the ith harmonic
THD - total harmonic distortion

3
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Structure's parameters U
ei(z,t) - strain tensor in the fiber at position z at time t 3
a. - axial stress in the fiber
c(oz) = 4 - strain resulting from a unidirectional stress
eo* - prestrain in the fiber to set the Q-point

State space models 3
ii - vector of the first N modal amplitudes
q,,, x,. - equilibrium points of the closed loop system U

- ith mode shape
C ith natural frequency of the structure
Q- diagonal matrix of the first N natural frequencies of the structure
Q - dar-- - _ -th vibrational mode
D - diagona. .aatrix of the damping factors of the modes of the structure
ci - "mode shape" resulting from the sensor placement
B - matrix of modal influence coefficients
Xp - state vector associated with the structure
(v(t), x(t), y(t)) - input, state and output, respectively, of the dynamic
compensator
(Ac, Be, Cc, i) - state matrices of the dynamic compensator
kd dosed loop gain of the control system
ki- closed loop gain of the control system which results in poles at tjO

- maximum closed loop gain of the control system such that the
system will not have a limit cycle of frequency approximately q
kc - steady state gain of the closed loop control system
P(s) - transfer function of the structure
C(s) - transfer function of the compensator
N(A) - describing function of a sinusoidal nonlinearity I
NFQ(A) - describing function of a quantizer nonlinearity
Ao - amplitude of a limit cycle 5

4
I
I
U

4 I



I
2. MODEL OF THE OPTICAL SENSOR

2.1 Introduction

The results reported in this paper were motivated by the experiment
shown in Figure 2.1 (Cox and Lindner, 1991).

LEA&-NP-lI -

I

Figure 2.1. Flexible Beam with a Modal Domain Optical Fiber Sensor.

This experiment consisted of a flexible cantilevered beam with a piezoelectric
bending motor attached at the root of the beam and a modal domain optical
fiber sensor attached along the length of the beam. The output of the optical
fiber was used as a feedback signal to damp vibrations in the beam. To
describe the effects of the modal domain sensor on the performance of the
control system, we require a model of the sensor. In this section we develop
that model and show the effect of the nonlinearity on the sensor output.

2.2 Sensor Model

2.2.1 Introduction

A modal domain optical fiber sensor, shown in Figure 2.2 as a block
diagram, consists of: 1) polarized laser light source, 2) lead-in optical fiber, 3)fiber sensing section, 4) lead-out fiber, and 5) detection electronics. This

particular optical sensor is distinguished from other optical fiber sensors in
that the waveguide parameters and source wavelength are chosen such that
two electromagnetic modes propagate in the optical fiber. A modal domain
optical fiber sensor was first demonstrated by Layton and Buccaro (1979).
Elliptical-core fibers were introduced by Kim et al (1987) to stabilize the
intensity pattern at the fiber interface. The first use of e-core fibers as strain
gauges was reported by Blake, et. al (1987). Murphy, et al (1990) introduced
lead-in and lead out fibers to isolate the gauge length of the sensor and
discussed analog and fringe counting configurations of the detection
electronics.

5
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Coherent Lead-in Fiber Lead-out Detectioln Seso
ight/ section fiber electronics output

stress

Figure 2.2. Block Diagram of the Modal Domain Optical Fiber Sensor. I
The optical fiber sensor in Figure 2.1 is mechanically attached to the

structure through an adhesive. (Optical fiber sensors can also be embedded in
a composite.) When an external load is applied to the structure, stress is
transferred from the material to the optical fiber. The stress in the optical
fiber induces strain in the fiber. The change in strain in the optical fiber is
observed as a change in the intensity at the endface of the fiber. Based on
this observation, the model of the modal domain optical fiber sensor that canbe described in terms of the following components:

1. The optical interrogation of the fiber.

2. The transfer of stress from the material to the optical fiber.

3. The strain-optic interaction.

4. The detection electronics.

In the analysis below we make the following assumptions for each of
the components of the model above. The coordinate system of the optical
waveguide is shown in Figure 2.3

y£CladdingI

Figure 2.3. Coordinate System for the Optical Fiber. 3
1. The optical fiber are strands of glass configured to guide coherent light.

(a) We assume that the optical waveguide has a cylindrical geometry.I
This geometry is parameterized by the core radius, a.

Ay I
n26
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I(b) We assume that the cladding is infinitely thick so that the weakly

guiding assumption (n1 - n 2 << 1) holds (Synder and Love, 1983).
These assumptions are commonly made in the analysis of optical
fibers. Using these assumptions for the waveguide, the
electromagnetic modes are called LP modes.

The implementations of modal domain sensors use elliptical core fibers.
The analysis of the electromagnetic modes that propagate in these
waveguides is a currently topic of research.

2. A modal domain sensor measures strain in the structure through the
mechanical attachment of the fiber to structure.

(a) We assume the stress in the host material is the same as the stress in
I the optical fiber. In real applications the model of the stress transfer

between the host material and the optical fiber depends on several
factors including the geometric orientation of the fiber on the structure
and the properties of the bonding layer between the structure and the
optical fiber.

(b) We assume that the strain in the fiber is uniform and that the change
in the cylindrical geometry is such that the waveguide assumptions
above are still valid.

3. The strain optic interaction obviously involves the assumptions in (1) and
(2) above as well as the following assumption.

(a) We assume that there is no dynamic interaction between the stress
waves in the glass of the optical fiber and the electromagnetic modes1 Apropagating in the waveguide.

4. A change in strain in the optical fiber results in a change in the intensity
I at the endface of the optical fiber.

(a) We assume that the electrical signal at the output of the detection
electronics is proportional to the intensity of the light to a point at the
endface of the fiber. The detection electronics for a modal domain
sensor actually integrates the intensity of part of the endface of the
fiber to increase the power coupling between the photodetector and the
light. This configuration of the electronics does not impact the analysis
below.

2.2.2 Optical Interrogation Of The Fiber

When the optical fiber is in an unstrained state, the fiber acts as a
waveguide for the light. The guided light can be described in terms of
eigensolutions of the governing partial differential equation by using

7
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separation of variables. Each solution, an electromagnetic mode, that
propagates in the waveguide depends on:

1. The geometry of the waveguide.

2. The indices of refraction of the waveguide ni and n2.

3. The laser source wavelength, X. 3
For modal domain optical fiber sensors all of these parameters are chosen
such that two electromagnetic modes propagate in the waveguide. I

Using the wekly guiding assumption, the spatial distribution of the
electric field of the two electromagnetic mr that propagate in the I
waveguide are of the iorr-

E(r,O,z)=I. r,6)e-Jiz, i=0,1, (2.2.1) 5
where the cons ics Po * 01 are the pZpagaion onabta . The propagation
constants depend on the waveguide parameters above. These modes in
".2.1) interfere with each other to produce a intensity pattern that varies

diong the length of the Aber. As a result of this interference, the intensity, If,
at the endface of the fiber, zf, has the functional form

If(r,8,zf) = I1 (r,O)+I 2 (r,O)cos(Apzf +a), A = 01-o. (2.2.2)

2.2.3 Strain Transfer I
To predict the change in the sensor output with respect to a force

applied to the structure requires a model of the strain transfer from the
stri i the optical fiber. Our analysis below will assume that the
functional relationship between the applied force from the actuator and the

ain in the optical fiber is known. This area is topic of current research. 3
2.2. Strain Ontic Interaction 3

Let " -' .....- !q fiber be attached to the structure along a path S on the
structure. Let ets, be the strain tensor for the point s E S at time t in the
cylindrical cordinate syL "the optical fiber. Let el be the normal
component of the strain tensor aligned with the longitudinal axis of the fiber.
The strair *a the optical waveguide causes three of the parameters of the
waveguide change:

1. The length of the optical fiber is changed; i.e. zf = zt(e). 3
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2. The core radius, a, is changed.

3. The indices of refraction, ni, i = 1,2, are changed through the
photoelastic effect.

The dependence of these three parameters on strain in the optical fiber is
reflected in the intensity of the light at the fiber interface (2.2.2) as

If W)= I 1(e) + 12(e)cos(r(e)) (2.2.3)3wherewhe(r) = fs AP()(1+E)ds. 
(2.2.4)

i The quantity F(e) is called the Rhase of the electromagnetic modes. It can be
shown (Reichard and Lindner, 1991) that for typical values of optical fiber
parameters the first order effects of the strain in the optical fiber is on the I
phase. Henceforth, we assume that the intensity terms in (2.2.3), 1. and 12
are independent of strain.

I The functional dependence of the propagation constants on strain is
nonlinear. Let e* be the strain distribution in the optical fiber when thestructure is in equilibrium. The analysis proceeds by expanding the

integrand in (2.2.4) in a Taylor series about e* to yield

S A(e)(l+e) = e +1

( 1 i _e)) (2.2.5)

j=1 j

I Dropping the higher order terms, the phase (2.2.4) can be rewritten as

1'(e) = fs A3(e)(1 + eds = Js AP3(e )(1+E]) cis

)6 aA3(*) (1+l)(j -')ds (2.2.6)
-~( +js ( )(1+(e -i v )CIS

fo(E*)+1 
(E). j=1

Substituting (2.2.6) into (2.2.3) we obtain

If(e) = i1+12 cos(l(E)) = 11+2 cos(fo(E*)+ f 1(W)). (2.2.7)

The quantity Fo(e*) is called the Qpninl The Q-point is set by static
j eformation in a non-sensing section of the optical fiber so that (2.2.7)

ecomes
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If (E) = 11 + 12 cos(fO (e*) + I1 (e)) = 11 + 1s sin(f 1 (E)). (2.2.8)

The model of the modal domain sensor in (2.2.8) depends on the strain
tensor. The results below do not depend on this tensor and they can be 5
explained more simply by assuming the strain tensor e is induced by a stress
distribution in the optical fiber that can be modeled by single stress
component (o, i.e. 3

e(;o (8)) = Eo (s). (2.2.9)

Using (2.2.9) the phase in the last term in (2.2.8) can be written as I

f, (E0 ) = fs AA EO sds = A~Js c0(sWds. (2.2.10)

Sensor output can be written as

If(t) = 11 + 12 sin(Aofs eo(s,t)ds) (2.2.11)

by substituting (2.2.10) into (2.2.8). A graph of the intensity at the endface of
the fiber vs. the applied stress is shown in Figure 2.4.

I2fI, I
(r.0 )

0 S'tran o(Go)

Figure 2.4. Intensity at the Fiber Endface vs. Strain. i
From (2.2.11) we see that the sensor output has a sinusoidal

noni nearity. The frequency of this sine function, AA, is called the fgI
Ligwaengy. The period of this sine function,

LT = ---x(2.2.12)

is called the frzingelngth.

I
___ I
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2-2-5 Detection Electronics

The light at the endface of the fiber is converted into an electrical
signal through the use of a photodetector. The output of the photodetector is
taken to be proportional to the intensity of the light at a point of the endface
of the fiber. The detection electronics use a highpass filter to remove the DC
bias. The constant gain of the detection electronics is taken to be one for
simplicity.

I Combining all of the results above, the model of the modal domain
sensor is

ymD M) = sin(AOJ, co (s, t)ds). (2.2.13)

When the modal domain sensor is used in its uan g cnfigLration, the
analog signal from the detection electronics (2.2.13) is processed directly.

I The second detection scheme counts the number of 2w phase shifts the
output of the sensor experiences. We call this detection scheme ffingeI nntinc. To model this detector, we define the quantizer nonlinearity as

SQFc(g)= nLf, if (n- )Lf <g <(n+j)Lf. (2.2.14)

The output of the detector is

SYPC (t) = QFC [sin(Alj SEo (s, t)ds)]. (2.2.15)

2.2.6 Sensor Parameters

The discussion above has identified the key parameters of a modal
domain optical fiber sensor as far as the control system is concerned.

1. The most important parameter is the fringe frequency, A5. For analog
detection, this parameter essentially determines the dynamic range of the
sensor as can be seen from Figure 2.4. For large amplitude strains, the
output of this detector is dominated by the sine nonlinearity in (2.2.13).
For fringe counting, the fringe frequency determines the quantization
levels of the sensor output.

2. The second important parameter of this sensor is the Q-point. During the
operation of the sensor, the Q-point can drift. If we let Ar'o denote the Q-

i point drift the sensor output (2.2.13) is given by

11
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In the sections below, the effect of Q-point drift is also discussed. I

Consider a structure which has been instrumented with a modal 3
domain optical fiber sensor. If this structure is subjected to a sinusoidal force
such that the sensor experiences a stress of, say,

a0 (s, t) = F(s)sin (ot, (2.2.17)

then the mathematical model implies that the output of the sensor will be !

f eo(s t)ds = A sincot (2.2.18) 3
will also be sinusoidal with amplitude A, say. The relationship between F(s)
and A, which underlies the analysis presented here, depends on many factors 3
including location of the force, material properties of the structure, frequency,
etc. In addition, the sensor we consider here could be a long gauge length
sensor. If this sensor is used in a long gauge length configuration, the effects 3
of sensor placement should be considered on a case by case basis.

2.3. Large Amplitude Nonlinear Distortion 3
In this subsection we consider the modal domain sensor with analog

detection electronics (2.2.13). For large levels of strain, however, the sine
nonlinearity introduces distortion into the signal. In this section we quantify
this distortion.

Suppose that a sinusoidal force on the structure results in a strain inm
the optical fiber that is given by (2.2.18). Substituting this expression for
strain into the model of the sensor (2.2.11) we get 3

YMD(t) = sin(Aro + AAsin mot). (2.3.1)

Obser- ig that the sensor output is a periodic function, (2.3.1) can be written
as the Fourier series g

yMD(t) = Jo( N6A)sinAr 0 + i2Jn(AOA)sinAr o cosno ot~n=2I

n even (2.3.2)

+ 7 2J n (AOA)cos ArO sin not 3
n=1
nodd

12 3



where Jn is an nth order Bessel function of the first kind.

signal When A$A << I and the Q-point drift is zero, A ffO, the power in the

YMD(t) is concentrated in the first term

YMD (t) - 2JI(AA) sin cot = AOA sin Cot. (2.3.3)

With increasing amplitude of the strain, A, more power is shifted into the
higher order harmonics in (2.3.2). Similarly, Q-point drift causes the
appearance of a DC term as well as to shift power into the components yMn(t)
which are out of phase with strain. This phenomenon can be quantified by
defining the power in each harmonic as

2I
I (2Jn (AA) sin AFo) neven (2.3.4)

2

with a similar definition for n odd. Then the total harmonic distortion, THD,
is defined as

I The THD is shown in Figure 2.5 as a function of the Q-point drift, Aro, the

* fringe frequency, A5, and the amplitude of the strain, A. Figure 2.5
essentially describes the linear region of a modal domain sensor when it is
used to sense vibrations in a flexible structure.

3 In a fringe counting configuration, this sensor will also introduce
distortions in the sensor output because of the quantization. This effect has
long been studied in the signal processing literature and it will not be
pursued here.

1.4 
"

O.S .. 

..10.6- \W% "'100

IIt
:7 ! ... " \

0 5 1 1.5 2 2 .

Figure 2.5. Total Harmonic Distortion.
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CLOSED LOOP ANALYSIS m

3.1 Introduction

In this section we consider the effect of the sine nonlinearity of the
odal domain optical fiber sensor on the performance of a vibration
ippression control system. To that end we assume that the structure is I
Lodeled by N vibrational modes as

1(t) + Dfj(t) + 0 2il(t) = Bu(t) (3.1.1) 1
here 5

D( ,-,j), u2 =diag(c(0,...,W ). (3.1.2) 5

f we assume that the strain induced in the optical fiber by the vibrations of I
he structure can be expressed - separation of variables expansion using
he basis functions

N

&Do(S, t)  Vi (s)ni (t), (3.1.3)

hen the sensor output is

YMD (t) = sin[Aq .A o (s, t)ds] = sin[A57 Ti(t) 8  i (s)ds] (3.1.4)

= sin A5 ci1 (t)] = sin[AC0(t)].

7he linearized model of the output (3.1.4) is

v -- ACr(t). (3.1.5)

The linear open loop system, expressed in state space form, is

k [ 71(t)] =[_02 I ]Xp +]u(t), (P I [(t) 0 -D B(3.1.6)

YMD(t)=[A4C OI 3

14 1
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I
The state space representation of the compensator is given by

c = ACxc + Bv(t), (3.1.7)

Yc = Ccxc +Dcv(t).

If the systems in (3.1.6) - (3.1.7) are interconnected according to

-! u(t) = y (t), and v(t) = -kdYMD(t), (3.1.8)

Ithen the resulting state space representation for the closed loop system is

S-[ -D B° kd Sin(AoCn). (3.1.9)
tc 0

I The dosed loop system is shown in Figure 3.1.

S Sensor Nonlinearity
Struturey YMD(t)

Compensator Feedback Gain

I Figure 3.1. Closed Loop System.

In constructing the closed loop system (3.1.9) we only assumed that the
compensator (3.1.7) gives acceptable closed loop performance with respect to
the linear model (3.1.6). The actual design of the compensator could have

i been carried out on a reduced order model, say, a subset of the modes in
(3.1.6). In that case the models in (3.1.6) and (3.1.9) would also include
residual modes.

i 3.2 Equilibrium Points

The sine nonlinearity in the sensor introduces multiple equilibrium
points into the linear design model. These equilibrium points are computed
by setting

Ixp =*i =0. (3.2.1)

i Substituting (3.2.1) into (3.1.9) we obtain

Ia15



0 = -Q + BCcx,. - BDKd sin(AC)(3.2.2)

0 = Acx, - Bckd sin(AWCnle). I
Assuming A;' exists, the last two equations in (3.2.2) can be rewritten as

T9 = -!Q- 2Bckckd sin(A4CI), (3.2.3)
where I

kc = Dc - CcA-IBc. (3.2.4)

Note that (3.2.4) is the steady state gain of the compensator.

The equilibrium points can be found by parameterizing (3.2.3) as

Tie = (lI- 2Bkckd)Y. (3.2.5)

Using (3.2.5) in (3.2.3) we see that y should satisfy

Y = - sin(ACC -2BkCkdY). (3.2.6)

The scalar y can be found graphically by plotting both sides of (3.2.6) on the
same graph. A typical graphical solution to (3.2.6) is shown in Figure 3.2. 5

-sin(AjCQ-BkckdY)

YI
I I

I

Figure 3.2. Calculation of Equilibrium Points.

A possible set of equilibrium points is also shown in Figure 3.2. 1
I
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I Based on the analysis above we can draw the following conclusions.

1. The assumption that Q -2 exists implies that the model of the structure
does not have any rigid body modes. Since modal dc-nain sensors
respond to strain this assumption is justified.

1 2. If A- 1 does not exist, A, has a zero eigenvalue corresponding to an
integrator. In this case (3.2.2) may admit multiple solutions for xe..

I 3. If kc, = 0, the compensator has a zero at the origin which corresponds to
pure velocity feedback. In this case the nonlinear system has only one

I equilibrium point at the origin.

4. Suppose that in the closed loop system (3.1.9), the structure is modeled by
a single mode with a colocated force input and displacement output.
Suppose further that the compensator is a simple constant k, = D0 > 0
and kd > 0. Then the sign convention we have chosen would result in
increased stiffness in the closed loop system. If kd < 0 the system
would be unstable for large enough gains.

5. The number of equilibrium points is determined by the frequency of theI sine function in (3.2.6). From Figure 3.2 we see that as the frequency
of the sine function is increased, the number of equilibrium points is
increased. The presence of multiple equilibrium points can be
characterized in terms of three factors.

i) The factor C1-2B is the steady state gain of the structure's transfer
function. This factor includes the placement of the actuator and
sensor through B and C matrices as well as the structure's modes.

ii) The second factor is kckd. This factor represents the steady state
gain supplied by the compensator. As this gain is increased, the
number of equilibrium points increases as expected.

iii) The third factor is the fringe frequency, AA, of the modal domain
sensor. Increasing the fringe frequency decreases the dynamic range
of the sensor, and increases the number equilibrium points.

6. The graph in Figure 3.2 assumed that the product of all of the factors in
(3.2.6) was positive. If that product is negative, then the sine function
is shifted by 1800. The results above remain essentially unchanged.

17. If the sensor has some Q-point drift, then (3.2.3) becomes

1n = -fl- 2Bckckd sin(Ar 0 + A5C10 (3.2.7)
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The Q-point drift introduces a phase shift into the sine function in
Figure 3.2 that causes all of the equilibrium points to shift. In I
particular, the equilibrium point at the origin is shifted to a nonzerovalue.!

3.3 Stability of the Equilibrium Points

Stability Analysis

Next we use Lyapunov's first method to check the stability of the
equilibrium points of the closed loop system (3.4.2). To this end we linearize
(3.4.2) to obtain

p 1 (3.3.1)

where ]

a 21 = _-Q-2 - cos(A5CTC )kdA5BDC, (3.3.2)

a31 = - cos(1Ac11.)kA BC

We call the factor I
-kd cos(AI Cr) (3.3.3) 5

the effective loop gain. For the equilibrium point i.0 = 0, the effective loopgain I

-kd cos(A C1.o) = -kd (3.3.4) 5
has its desired value. That is to say the poles of the system linearized around
the equilibrium point the origin correspond to the closed loop poles that I
resulted from the compensator designed using the linearized plant model. At
nonzero equilibrium points, the effective loop gain has a value which is
proportional to th slope of the term 3

- sin(AOC(I- 2BkckdY) (3.3.5) u
at the intersections with the 450 line. See Figure 3.2.

1
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I
We can draw the following conclusions:

1. We assume that the structure's poles are exactly on the imaginary axis
(no natural damping), and that the poles depart into the left hand
plane as the compensator gain is increased from 0 to kd as shown in
Figure 3.3. If the sign of the effective gain is reversed, then the poles
of the linearized system in (3.1.5) will depart into the right half plane
for small values of kd and the corresponding equilibrium point are
likely be unstable. Figure 3.2 shows that the equilibrium points are
likely alternate between stability and instability for systems with no
natural damping.

5 2. If the structure has some natural damping, the reasoning in (1) still holds
qualitatively.

3. Supposa that the closed loop (3.1.9) system (3.3.1) has at least one
nonzero equilibrium point corresponding, say, to the first intersection
of the curves in Figure 3.2 for positive y. At this intersection the slope
of the sinusoid (3.3.5) is negative. Also suppose that the system has
enough damping so that for some value of the fringe frequency, A5,
this equilibrium point is stable. As the fringe frequency increases,
reducing the dynamic range, the slope of the intersection of the two
curves in Figure 3.2 increases. As the fringe frequency increases the
magnitude of the effective gain increases. As the fringe frequency
increases to infinity, eventually this stable equilibrium point willbecome unstable.

INow consider the next equilibrium point of increasing y in Figure 3.2.
As the fringe frequency increases, the slope of the sinusoid increases
and this equilibrium point remains stable. Increasing the fringe
frequency decreases the stability region of each equilibrium point.

5 4. If the sensor has some Q-point drift, then the effective gain becomes

-kd cos(Aro + AOCTle). (3.3.6)

The Q-point drift causes the phase of the sinusoid in Figure 3.2 to shift.
For Q-point drifts larger than 900, an equilibrium point can change
from stable to unstable.

3.4 Limit Cycles

Next we investigate the presence of limit cycles in a control system
which incorporates a modal domain sensor. If the structure's transfer
function is
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P(s) = C(s2I + Ds + U 2) 1 B (3.4.1) 1
and the compensators transfer function is

C(s) = [Cc (sI- Ac)-lBc + Dc ], (3.4.2)

then the closed loop system (3.1.9) is shown in the block diagram in Figure
3.1. We also assume that the closed loop system has only one equilibrium
oint at the origin.

To investigate the possible presence of limit cycles, we use describingfunctions (Ath -ton, 1975). We assume that the limit cycle at the input of the Inonlinearity in igur-' 1 has the form

A o cos cot, (3.4.3) 1
and we look for condiL.jns under which such a signal could be supportedthroughout the system. To that end, the describing function, N(A), for the msinusoidal nonlinearity in Figure 3.1 is

N(A) = 2J,(APA) (3.4.4)

A

The graph of

N(A)= 2J1 (AIA) (3.4.5)

41 A5A

is shown in Figure 3.3. 1
N(A) 1.2

0.0. I
0.8

0.6-

0 -2 4 6 12 14I

Figure 3.3. Describing Function of t- Sine Nonlinearity.

If this system has a limit cycle, then a solution, (Ao, coo), to the equation 3
2
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1+ N(A)kdC(jO))P(jco) = 0 (3.4.6)

should exist for some Ao and coo. Solutions to (3.4.6) can be found by plotting
the root locus of

w+k(A)C(s)P(s)=0 (3.4.7)

I where

3 k(A) = N(A)kd, for 0:< A < (3.4.8)

E If the root locus intersects the imaginary axis at coo for a value of A = A0, then
a limit cycle of the form (3.4.3) is predicted.

a To investigate the presence of limit cycles for this system, we recast
the root locus in (3.4.7) - (3.4.8) in terms of the root locus design of the
original linear system as shown in Figure 3.4.

U_ kd

closed loop pole

open loop pole kI

IIR
Figure 3.4. Root Locus of One Natural Frequency

of the Structure.

if Rewrite (3.1.7) as

v(t) = -kCii(t). (3.4.9)

I Then as k varies from - -c to cc, the poles of the linear system trace out the
usual root locus curves. In particular, the closed loop poles are given by k =

5k.

From (3.4.8) we can see that for A = 0, k = kdA5. Let Ao be the value
of A that solves
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ij(A A) = 0. (3.4.10)3

Then this value of A corresponds to k = 0, i.e. the open loop poles of the 3
structure. Note that larger values of A correspond to a sign change in the
compensator gain k. As A goes to infinity, the gain in (3.4.8) oscillates

between its minimum and maxjmum values, -0. 4, and A6, respectively. I
Thus, as a function of A the variation of each pole of (3.4.7) is a single line
beginning on the positive root locus and ending at the open loop pole which

doubles back on itself. This behavior for the natural frequency q of the
structure is shown in Figure 3.5.

I
Stable limit cycle Im
with amplitude A02

A=O

Unstable limit cycle I
with amplitude Ao1

Figure 3.5. Root Locus Of the Describing Function
of One Natural Frequency of the Structure.

Let kI be the gain in (3.4.7) such that the pole at jwi is moved to the
imaginary axis. Suppose that ki < 0 as suggested in Figure 3.5. Next define I
Amn as the constant that minimizes

min N(AOA). (3.4.11) 1
A

Finally, define the feedback gain kdm by I
N A =kdmax •  (3.4.14) I

4IN(IAmiDn)

For a given structure, actuator, and modal domain sensor, if the gain of the 5
closed loop system is

kd > kdmax  (3.4.15) 1

2
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I
then the closed loop system will admit a limit cycle with a frequency of
approximately cc as shown in Figure 3.5.

Based on the analysis above, we can draw several conclusions.

1. For the example shown in Figure 3.5, if limit cycles exist, they areIapproximately at the same frequency as the natural frequency of the
structure.

2. The value of the gain ki, which determines kIna, will be a function of the
material properties of the structure as well as the sensor and actuator
placement.

3. If kd, satisfies

S0 < kd < kdmax (3.4.16)

then this analysis does not predict any limit cycles. This range of gains3 depends on the fringe frequency as shown in (3.4.14). As the fringe
frequency increases, kdm. decreases as we would expect.

4. The amplitude of a limit cycle is determined from

ki = N(AIAo)kd (3.4.17)

which may have multiple solutions for Ao. For a given solution which
satisfies

AAo = constant (3.4.18)

the amplitude of the limit cycle Ao will increase as the fringe frequency, Af,
decreases.

5. Suppose that a closed loop system admits the existence of multiple limit
cycles with amplitudes, A01 < ... < Ao(.i1). It can be shown (Atherton,
1975) using standard arguments that the limit cycle corresponding to
the amplitude A01 is unstable, and the limit cycle corresponding to Ao2
is stable. The limit cycles, ordered according to the magnitude of their
amplitude, oscillate between stable and unstable, the first being
unstable. This analysis is applied to each of the structure's natural
frequencies.

6. If a closed loop system does admit at least one limit cycle, a rough measure
of the linear operating region could be taken to be the region inside the
limit cycle with smallest amplitude. For a given system, this region
could be calculated from the analysis above.
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7. This analysis focused on one gain for which the root loci crossed the

imaginary axis. This analysis could be repeated at other gains if the
root locus is more complicated than shown in Figure 3.5.

3.5 Fringe Counting U
In the previous subsection we analyzed the effect of a modal domain

optical fiber sensor in a feedback loop when it was in its analog configuration.
In this subsection we consider a feedback loop with a modal domain sensor in
its fringe counting configuration. In this configuration, the model of the
sensor is a quantizer where the quantization levels are the fringe length L4 as
shown in (2.2.14-15). The upper bound on the sensor output is determined by
the material properties of the structure or the optical fiber, the strain level atwhich the material enters its plastic region. Another constraint is posed by Ithe digital hardware. Here we assume that the upper bound is infinite.

The model of the closed loop system incorporating an modal domain I
sensor in a fringe counting configuration can be obtained from (3.1.9) by |
replacing the sine nonlinearity by the quantization nonlinearity (2.2.15). The
result is 0

XP - BC0  - BD0 kE FC (Aro + Af (3.5.1)
lie] J 0 0 A0 Jx.J. Be ]

The equilibrium points satisfy

lie = (Q- 2Bkckd)y, (3.5.2) 1
I -QFC(Aro + AOCfj-2BkckdY)

where the derivation of (3.5.2) follows the derivation of (3.2.5-6). Equation
(3.5.2) can be solved graphically as shown in Figure 3.6. I

4 , Q,/] Q!

(a) AfICfl 2 Bkckd > 0 (b) AOCa- 2Bkckd < 0

Figure 3.6. Equilibrium Points of the Fringe Counter.

24



I

In Figure 3.6a we assumed that

IA o = 0, and A3CfQ- 2Bkckd > 0. (3.5.3)

In Figure 3.6a it is clear that there is only one equilibrium point at the origin.
It is also easy to see that Q-point drift, if large enough, could cause that
equilibrium point to jump to a nonzero value, or have no equilibrium point at

The stability of the equilibrium points can be investigated using the
approach in Section 3.2. In Figure 3.6b assume that the equilibrium point
does not correspond to one of the jump discontinuities of the quantizer
function. Then linearizing the system around this equilibrium point yields

,D 0] 011 5.4)
- I 0 AC x

Thus, if the open loop system with the compensator is asymptotically stable,
each of the equilibrium points will also be stable independent of the fringefrequency AO..

E To investigate the presence of limit cycles, the describing function
analysis in the previous section can be used. The describing function for theI quantization nonlinearity in (2.2.15) with Q-point drift is

NL(A)=0, O Ac . (3.5.5)3 2
and

'4 A2. -EL + Aro )'

NFc (A)- 2_4= 1 (3.5.6)
A2 M- A2 - nL + 2"]-2

*where
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n=2m-1, 3

(m - )Lf + Aro < A < (M+ +j)Lf + Aro, (3.5.7)

(M--J)Lf- AroA A<(M + J)Lf-Aro.

A plot of this describing function for several values of Aro is shown in Figure 1
3.8.

Proceeding as in the last section, we note that the describing function 5
is always positive. Hence, if the root locus for the linear system is always in
the left hand plane for 0 < k < kd, then this analysis does not predict any limit
cycles for the fringe counting configuration of a modal domain optical fiber
sensor. Li[ :t cycles could occur, however, if the linear system is
conditionally le.

4
1

0.8-'

0.6 f

o.4 Npc(A;0)

0.2_

00 1 2 3 4 5 6 A

(a) Aro 0

2.5 - Nc(A;')
2. -

0.5 3

05 oA roAo £o
00.2 0.4 0.6 0.0 A I

(b) Q-point rf A I
Figure 3.7. Describing Function of the Quantizer Nonlinearity.
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I 4. CONCLUSION

In this paper we have considered vibration suppression control systems
for flexible structures which incorporate a modal domain optical fiber sensor.
We have described the nonlinearities of these sensors as sinusoidal when the
sensor is operated in its analog configuration and as a quantizer when the
sensor is configured for fringe counting. The sinusoidal nonlinearity can
introduce multiple equilibrium points and limit cycles. The fringe countingIconfiguration can, under some circumstances, introduce limit cycles.

The analysis in this paper was carried out in terms of the parameters
of the sensor, the fringe frequency and the Q-point drift. Given a structure
with a modal domain optical fiber sensor, these results can be used to predict
the nonlinear behavior in terms of potential disturbances, or to size theg sensor to avoid undesirable nonlinear behavior.
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I
I Abstract

A Gaussian sum estimation algorithm has previously been developed to deal with

noise processes that are nonGaussian. Inherent in this algorithm is a serious growing

memory problem that causes the number of terms in the Gaussian sum to increase

I exponentially at each iteration. A modified Gaussian sum estimation algorithm is

developed here that avoids the growing memory problem of the previous algorithm

while providing effective state estimation. A simulation example is presented which

illustrates the new nonGaussian estimation technique.

I. INTRODUCTION

Although the Gaussian assumption for modeling many types of signals and noise

processes is valid in a wide range of applications, in practice it may not be a good

assumption for some signals. Estimation techniques therefore need to be developed that

can cope effectively with the nonGaussian nature of certain signals. One such approach

previously developed by Sorenson and Alspach [1] is the Gaussian sum technique. The

density function of each nonGaussian process of the system is approximated by a

This work was supported by the Office of Naval Research, grant N00014-89-J-3123.
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weighted sum of Gaussian density functions. The conditional density of the state given

the available measurement sequence, necessary in the Kalman filter development, is

updated using the Gaussian sum approximations and Bayes' rule.

A serious limitation in the approach used by Sorenson and Alspach is that the I
number of Gaussian terms used to approximate the density functions increases at each

time iteration. An alternate approach is required to alleviate this limitation. A 3
modified estimation algorithm is developed here based on an adaptive Kalman filter

scheme first presented by Magill [21, and extended by Moose [3]. Essentially, a

parameter vector is used to uniquely describe each Gaussian term in the estimator. The 3
parameter vector is restricted to be randomly chosen from the same finite set of known

values at each iteration. By using a nonGaussian signal model in conjunction with the I
modified formulation of the Gaussian sum estimator, the number of Gaussian terms at

each iteration of the estimator will be fixed, thereby avoiding the growing memory

problem. !

The nonGaussian signal model and associated Gaussian sum density approximation

is developed in section II. The modified estimation algorithm, termed the modified 3
Gaussian sum (MGS) adaptive filter [4], is developed in section III. A simulation

example implementing the MGS adaptive filter is presented in section IV. The U
conclusions are given in section V. 3

II. NONGAUSSIAN SIGNAL MODEL DEVELOPMENT i

Let u be a random noise process or random input signal with a nonGaussian

density function. It can be modeled as the sum of two statistically independent random

processes 3

U b+n (1) 3
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IThe first term, b, is a semi-Markov process with state transitions governed by the

transition probability matrix of a conventional Markov process. Markov processes have

the property that a transition is made at every time instant. The transition may return

the process to the state it previously occupied, but a transition occurs nevertheless.

However, in the semi-Markov case, the amount of time between transitions is a random

I variable [5]. The value of b is randomly selected from a fixed set of discrete values,

I characterized by a delta probability density function

p(b) = P 6(b - bi) (2)

I with

[] MI MPi=1; Pi>O fori=1,2,...,M (3)

This process can be thought of as a randomly-switching bias, each bias value bi having

U probability Pi.

The second term, n, is a zero mean white Gaussian process with variance a'. With

both densities known, the density function of u can be found using the convolution

relationship between u, n, and b [6]

p(u) - p(u - b)pb(b)db (4)

where pn(u - b) is the Gaussian density with n = u - b

p.(u -b) = T e-(-)- (5)

I 3



i
Substituting (2) and (5) into the convolution integral (4) gives

00 1 fU-b b2 M

p(u) = 10 j e- 24P ~b-b (6)U

Interchanging integration and summation

(U) M Pi 020= 2 e- (b-b,)d (7)

Using the sifting property of the delta function [7]

f (a) f J (x)S(x - a)dx (8)3

the integral of (7) is evaluated as I

p(u) Pi~ e-Q ) (9)

or I
p(u) = ZPN[b,,u.n (10)

Thus, the nonGaussian density function of u can be modeled as a Gaussian sum. The 3
weight Pi of each Gaussian term is the probability of the jth bias term. The bias term

bi is restricted to be randomly selected from the same fixed set of bias values at each I
iteration. Using this model in conjunction with the modified Gaussian sum adaptive

filter developed in the next section avoids the growing memory problem of Sorenson and

Alspach's development. 3

4
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I Selecting the parameters Pi, bi, and an in (10) to obtain the "best" approximation

PGs to some actual nonGaussian density function PA is accomplished by means of

minimizing the Lk norm

PA 
M k

This curve fitting exercise can be done off-line using several values of M until a suitable

trade-off between minimum norm and minimum M is obtained. Sorenson and Alspach

( (1] performed this curve fitting procedure using L1 and L2 norms for a uniform density

and a Gamma density. It was found that minimizing the L' norm resulted in many

I fewer terms in the Gaussian sum and a considerably better looking approximation for

both densities compared to minimizing the L' norm.

Fig. 1 compares a Gamma density with a four-term Gaussian sum density

approximation minimizing the L 2 norm. The Gaussian sum curve is shown to fit the

Gamma curve reasonably well. The Gamma density used is

= u 3 e-ul P(U) ={ 6 (12)-
0 u<0 (12)

Each term of the Gaussian sum has a fixed value of an = 1. Table I lists the values of

Pi and bi used in the Gaussian sum.I
TABLE I.

Gaussian sum Pi, bi values, n= 1.
i Pj bi

1 0.081 2.537

2 0.432 2.553

3 0.356 4.555

4 0.131 6.933

5
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III. MODIFIED GAUSSIAN SUM ADAPTIVE FILTER

A modified Gaussian sum adaptive filter is now developed for a linear system with

a deterministic input signal, nonGaussian , ant noise, and nonGaussian measurement I
noise. The system is modeled in standard discrete-time state-space form as p

Xk+1 - 4DXk + Juk + PWk (13)

Wk = ak + mk (14)

zk = Hxk + Vk (15) 3
Vk = bk + nk (16) p

where xk+1  is the state vector

Uk is a known deterministic input

Wk is the vector Gaussian sum signal model of the actual I
nonGaussian plant noise process, comprised of semi-Markov

bias vector ak, and zero mean white Gaussian noise m with

covariance Q 5
zk is the measurement vector

Vk is the vector Gaussian sum signal model of the actual I
nonGaussian measurement noise process, comprised of semi-

Markov bias vector bk, and zero mean white Gaussian noise nk

with covariance R 3
t, r, ii, H are the respective constant transition matrices I

and the random quantities Xk, ak, mk, bk, nk are assumed to be mutually statistically

independent.

The optimal estimate iA+, of the state vector is found by minimizing the mean- 3

6I
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I square error between xk+1 and ik+i. This results in the conditional mean estimate

Xk+1 = E[xl+ IZk+,] 00= Jok+P(Xk+l I Z k+,1) dxk+, (17)

where Zk+i is the current measurement sequence {zI,z 2,..., Z+,}. The conditional

I density function of (17) can be written as the ratio of the corresponding joint and

I marginal densities

p(Xk+1 Zk+) =P(k+, Zk+1) (18)
p(Zk+i)

E The two bias vectors a and b are explicitly brought into (18) by considering the joint

density P(Xk+l, Zk+I) to be a marginal density found from

p(Xk+l, Zk+,l, ak+, = ai, bk+ = ,bj) by summing over the a and b terms

I
E EMP(xk+l, Zk+l, ak+I = a, bk+l = bi)

P(X&+i i=1 = p(Zk+l) (19)

Using Bayes' rule and using p(Xk+l, Zk+I, ai, bj) as shorthand for

P(Xk+l, Zk+l, ak+1 = a, bk+1 = bi), the conditional density of (19) becomes

P(Xk+1 I Zk+I) = Z Z p(Xk+i I Zk+,a,,bj)p(a,,bj I Zk+) (20)
i=1 j=1

I Substituting (20) into the conditional mean (17), and interchanging integration and

summation results in

N 0r0Ik+ 1Z Z Xk+ 1 p(Xk+ 1 I Zk+,, a,,b) dxk+j p(a,bi I Zk+I) (21)
i =1 -00

!7
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The bracketed integral in (21) is the conditional mean estimate of xk+. given that

ak+l = ai and bk+ 1 = bi, denoted by

-00

In effect, ;,+, represents the estimate for the ijth density combination from the two 3
Gaussian sums. A fixed set of N x M (NM) estimators is needed to provide all of the

individual 4 11 estimates. The overall estimate from (21) and (22),

,+1= E 2k+,p(ai, b I Zk+1) (23)i=1 j=1 I
is a weighted sum of the NM individual estimates. The weighting factor p(ai, b, I Zk+l)

is the probability that ak+i = ai and bk+l = bj given the current measurement sequence m
Zk+ 1. Since the number of terms in the overall estimate (23) is fixed, the growing l
memory problem of [1] is avoided.

Each estimate (22) is found from a Kalman filter equation, modified [4] to include

the two bias terms ai and bj of the Gaussian sum densities, given by

~iie1= 4m~'ki + ruk + Tha, + Kk+l[zk+l - bi- H(4Mk' + PUk + TPa)] (24)

The Kalman gain and covariance terms3

M 1='" 4pkT + %pqp1 T (25)I

Kk1= Mk+IH T(HMk+IH T + R)-1  (26)

Pk+j = (I - Kk+lH)Mk+l (27)

8I
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I are the same for each iith estimate (24) because the covariances Q and R remain fixed

for each respective bias parameter a, and bi.

The weighting term p(ai, b Zk+l) of (24) is found next. Using Zk+ l -- {Zk,Zk+l}

3 and Bayes' rule, the weighting term becomes

p(a,,bi I Z, ) = p(zk+ l I aj, bj, Zk)p(ai, bj I Z,) (28)
p(zk+l I Z)(

The first term of the numerator of (28) can be approximated by a Gaussian density

if the bias terms switch slowly compared to the time interval k [3], given by

I P(Zk+l I aj, b, Zk) = N[H(t2jL + rUk + 'Pai) + bi, HMk+IHT + R] (29)

with mean and covariance terms available from the Kalman filter equation (24) and

Kalman gain (26).

The second term of the numerator of (28) is the predicted probability value that

I a k+l= ai and bk+l = bj given the past measurement sequence Zk,, given by

m N M

- p(ak+l = aj, bk+l =bjI Zk) = k (30)
a=1 0=1

where

Ia =p(ak+l= aI ak= a.) (31)

0j' = p(bk+I = bi I bk = b= ) (32)

wk/ = p(ak = a., bk = bo I Zk) (33)

The 8"G and 8j terms are Markov transition probabilities [5]; that is, 0'* is the

conditional probability that a =a i at time interval k+l, given that a =a a at time

9



I
interval k. The Oj' term is similarly defined. The term wO is of the same form as (28)

and is just the previous weighting term at the previous time interval k.

The denominator term of (28) is independent of ij. Therefore it is the same for I
each ijth estimator and becomes a scale factor. 3

Combining (29) - (33), the weighting term (28) is written as [41

N M
w+, = p(a,bi I Zk+,) = Ck+lp(Zk+l I a,,bj, Zk)Z Oa*99Of4w0 (34)a=l 3=1

where C*+1 is a scale factor determined at each time interval such that

E Wki=1 (35)
i=1 j=1

guaranteeing that the sum of all the weighting terms (34) is equal to one. I
The structure of the overall MGS adaptive filter is a fixed bank of NM Kalman 3

filters operating in parallel, with each individual estimate multiplied by its own

,. cesponding weighting term. The ijth estimator based on the bias terms that most

closely matches the actual bias terms of the modeled system will have a corresponding

weighting term that tends closer to one, while the weights of the other mismatched I
estimators will tend towards zero. A block diagram of the MGS adaptive filter is shown u
in Fig. 2.

I
IV. SIMULATION EXAMPLE

An example illustrating the modified Gaussian sum estimation technique is now I
presented. A first-order system is used, modeled by the following discrete-time I

equations

I
10 I

I



'T--A:+ e -a)

xk+l = e-aTx, + (1 - e-T)u + (1 aT6)

Wk = ak + mk (37)

Zk = Xk + Vk (38)

I Vk = bk + nk (39)

I The value of a is 0.6 and the sample time T = 1 second. For simplicity, let the

plant noise (37) be zero mean white Gaussian with variance Q = 1.0. Therefore, the

randomly-switching plant bias term takes on the value of ak = 0. The MGS adaptive

filter structure now reduces to a bank of only M filters operating in parallel. The actual

measurement noise, modeled by (39), has the Gamma density of (12), with a mean and

variance of 4. The measurement bias term bk can be randomly selected from the last

Ithree bias terms of TABLE I, {2.553, 4.555, 6.933}. The first bias term of TABLE I,

{2.537}, is not used since it is so close in value to the second bias term. The

measurement model noise term nk is zero mean white Gaussian with variance R = 1.0.

A deterministic input of uk = 10 is used throughout the simulation. Fig. 3a shows the

measurement and state sequences. Note how the measurement is centered about 14,

indicating a mean value for the Gamma density of 4.

The filter is initialized with equally-valued weighting terms

=, for j 1,2,3 (40)

A Markov transition probability matrix OjO, consisting of 80 elements, is configured

with a high probability that the bias term does not switch from one value to another,

and a low probability that the bias term does switch, given by

eio .025 .95 .025 (41)
.025 .025 .95

11
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The initial value of the state and state estimate is xo = i0  = 20, and the initial I
value of the variance of the error Xk+i- Xk+1 is P0 = 100. The overall state estimate

and the state are shown in Fig. 3b, with the error and overall state estimate shown in

Fig. 3c. Note how the error appears to be zero mean, thus showing that the MGS 3
,daptive filter removes the bias effect of the nonzero mean Gamma measurement noise.

Figs. 4a, b, and c show the weighting terms for each of the bk bias terms. In order I
to lessen the noise of the weighting terms, a first-order lowpass filter 3

w+ = AWj + (1 - A)wL,+ (42) 3
is used to smooth the weighting terms, where A = 0.7. Fig. 4d can be thought of as the I
overall measurement bias estimate bk due to the nonzero mean Gamma measurement 3
noise. Using (24) and (34), this overall bias estimate is part of the overall state

estimate (23) and is written in this case with a = 0 as

bk = Zwib! (43)I
j=1

Note how this overall bias estimate approximately models the mean value of 4 of the

Gamma measurement noise. 3
V. CONCLUSIONS I

An estimation technique has been developed which can cope effectively with

nonGaussian signals. This MGS adaptive filter is comprised of a fixed set of estimators

operating in parallel with each individual estimate possessing its own corresponding i
weighting term. The MGS adaptive filter is suitable for practical implementation since

it avoids the growing memory problem of a previously developed algorithm. U
12
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AluauL 2. SyA= sin moka
This paper describes the use of distributed filtering to

realize arbitrary scalar system outputs from the output of a In this section we describe the mathematical model for
distributed sensor. The set of scalar position measurements the sensor and a mathematical model for the clan of flexible
realizable using traditional point sensors is a subset of the set of structures considered in this paper. Since we are concerned
scalar outputs realizable using distributed sensing and filtering. with the application of distributed sensing to the dam of
This is one of the advantages of distributed sensing over point flexible structures subject to bending and vibrations in one
sensing. Several examples are provided to illustrate dimension, we consider as a representative example the model
applications of distributed filtering. It is shown that for a flexible beam.
distributed-effect sensors can be used to implement functional
observers, providing a significant reduction in compensator 2.1 Sutem mod

Let V(x,t) denote the deflection of the flexible structure
1. In from equilibrium (defined as (zt)--O) at the point z in the

domain of the structure, D( Z-VfIOf 0_< 1_<), at time t For
Sensor placement continues to be an important issue in zD(ej), y(zgt) describes the shape of the sWucture as A function

the control of flexible structures. Restrictions on sensor of time. We shall amume there exis a tsoof functions tJs )J
placement often result in limitations on the set of realizable which form an orthonormal bai for L'(qJ), the set o[ 81
system outputs or measurements - particularly when the square-integrable functions defined on D(RJ)j5 . At any time
outputs or measurements are produced by point sensors located tI=?, the set of all structural shapes pfr*, is contaimui in
on the structure. L'(qj); therefore, given any shape (z,t), there exists a set of

Distributed sensors provide an attractive solution to time varying weights (q,#) such that
many of the problems associated with the use of point sensors
in flexible structure control. Distributed sensors produce a Y(1, -f t)04) ()
spatially continuous measurement of the system behavior.
Most control systems, however, employ scalar signal processing The basis functions {#j(z)} are commonly refered to ,-
and computing technology; therefore, distributed sensor outputs mode shapes of the structure, and the time varying i
are usuauy converted into scalar signals before they are made {qj(t)) are called the modal amplitudes or modal weight
available to the control system. The challenge is to retain in
the scalar signal, as much of the information contained in the While y(st) in (1) is expressed as an infinite sun
distributed signal as possible. The process of converting the mode shapes, we typically asme that y(zt) can be
distributed measurement into a scalar signal is esentially reasonably approximated by a finite number of modes, so that
distributed filtering.

The work presented in this paper provides the y(z,t)='(2)
theoretical foundation for the use of distributed sensing and
filtering in a variety of control applications. This technology is
already being applied experimentally, particularly in the area of For models of flexible structures, the upper limit N in (2) may

* modal filtering 4,31. The idea of fltering distributed signals to be very large.
provide scalar sensor outputs also applies to the design of Given the basis {#*(z)), the modal amplitudes Lnjit))
distributed-effect sensors - sensors that produce a scalar output completely describe the shape of the structure, y(zt). In the
that is band on a distributed e umt [2]. modal basis, one mathematical model of the flexible structure is

In this paper, we consider the application of distributed described by a second-order ordinary differential equatic of the
sensing and filtering to the clas of one-dimensional flexible form
structure. represented by flexible beam, and it is assumed that
there ae no restrictions on the filter functions that may be MIt)+Kn(t)=B,(v, (3)
implemented. In section 2 we describe mathematical models
for the clas of systems and sensors considered in this paper. In where
the third section, we describe the filtering process and show the
existence of filter functions for realizing any arbitrary scalar rjt)= '.(')q2(t).- ()r. (4)
system output consisting of a liar combination of the system
position states. In section 4, we present several examples of The operators M, K, and B in (3) are known as the mas,
distributed filtering apphtions, including the design of low- stiffness, and input influence matrices respectively, and u(t)
order compensators. The fia, sectio contains a summary of denotes external forces (control or disturbance) which may act
the results preeted in this paper and describes some areas for on the structure.
future research.



Let z() denote a system output or measurement. Substituting (2) into (10) and interchangi the order of
System position outputs are modelled as linwr combinations of integration and summation, the output may be wrtten as
the system position states in (3) - that is, there exists an output
or measuremesit matrix C of appropriate dimensions such that

((t)= (s), ) 714t). (13)

In the special case where (t) is a position measurement that Because the mode shapes {$,z))ame a basis for the set of all U
corresponds to the output of a point sensor located at a point square-inte6rable functions d fned on D( ) (51, they are am a
z=zo on the structure, s(t)=y(z0,t) and the output matrix C in basis for the set of all square-integrable filter transmittance
(5) is given by functions. If we restrict K(z) to the filnite-dimensional space of

square-integable functions spanned by the set of mode U
C--01 (20) 0 2(zo) .O )1, (6) shapes used to approximate y(z,t) in (2), then there exists a set Uof N scalars {k1, ... , ktt} such thatU

where 0j 1(r) denotes the value of the j-th mode shape evaluated kN) that

at the point ==z 0.  K(z)-- = ,() (14)

2.2 Seo= ad filte m l Substituting the modal representation (14) for K(s) into

The output of an ideal distributed position sensor is the expression (13) for the output yields
simply the structural shape y(z,t). An example of such a sensor
is the holographic sensor described in (1,2]. For structural N N U
displacements within the linear range of the sensor, the spatial e(t)= (J[0 k ,{s) Oj<) d it). (15)
variation in the intensity of the optical signal is proportional to Jl 0=1
the shape of the structure at ime t [1. Interchanging the order of summation and integration in (15),

To convert the iniormation provided by the distributed and recalling that the mode shapes are orthonormal yields
sensor into a form that can be rocessed by the control system, I
one or more scalar signals, eft, are formed by performing the
spatial filtering operatio ) e(0= A j 11{t). (16)

Equation (16) implies that for z(t-e(t), as in (12), the output

We call K(z) the filter transmittance or weighting function, and matrix C is given by

refer to e(t) as the filtered output of the distributed sensor. In ... kbJ. (17)
the case of the holographic sensor this is accomplished by C=Ik k

passing the output through an optical filter with a spatially Conversely, for an arbitrary output matrix C with elements
varying optical transmittance, K(z), before it is processed by a if
photodetector. The photodetector produces an output
proportional to the spacial integral of the intensity of the I
incident optical signal. K W= "j (18)

In a distributed-effect sensor, the output of the sensor is
a spatially filtered function of y(z,t), but the function y(z,t) is
not directly available. An example of this type of sensor is a then the filtered output of the distributed sensor, e(t), can be I
modal-domain optical fiber sensor. An optical fiber attached to written in the form (5), and equation (12) is satisfied.
a beam is sensitive to strain along its length. If the sensitivity
of the fiber to strain can be varied as a function of position 4. &Nmplm
along the fiber, then, ignoring some constants, the output of a 4.1 Pgin inng
photodetector at the far end of the fiber can be assumed to be I

One application of distributed sensors is to duplicate the
t1 =) output of a point sensor located somewhere on the structure.
ot) K(=)-( . The output matrix C for z(t)--j(z,t), wa given in (6). By (18),
0 (' the corresponding weighting function is

The net effe .t of spatially filtering and integrating the
output of a . ..4i sensor, but a distributed output is never K(z)-top o 0'o) (19)
directly availaole. 

=1
3. Uta doih Setting the scalar output z(t) equal to the output e(t) in (11),

yields
For simplicity, we will restrict our attention, in this I 1 K, z) I

section, to distributed positioin ensors, but the results may be Y(},J=J 20)
extended to other distributed sensors, such as those that
measure strain or velocity. If the system output z(t) in (5) which implies
corresponds to the output e(t) in (10), then K(z)-6(z--z), (21) 3

f1 K(z) y(s,t) d.zC(t). (12) where b(z-r) is the Dirac delta function centered at z=ze.
0 This example shows that the set of filter weighting •

functions that produce scalar outputs corresponding to the U
We need to answer the followin4 question: Given an arbitrary outputs of point sensors is equal to the set of delta functions
output matrix C does there exist a filter weighting function centered at points :%D(j). Clearly, this set is only a subset of
K(2), such that (12) holds? If the answer to this question is the set of all admiisble filter weighting functions; therefore,
yes then distIbuted sensor output filtering, we can the set of position output matrices realisable n point
y" thn dsired icaut system position output or sensors, is a subset of the set of output matrices real'z e using
reaise anyt distributed sensor filtering.
meaueet. ; I



4.2 XWA For an Euler-Bernouli beam model, the mode shapes,
Another application of 4"stributed sensors is modal Oj(z), are not only orthonormal, but satisfy the additional

filtering. The filter weighting function K(z) may be chosen to orthogonality relation
elminate certain modal components, or modes, from the rI
system output. This is analogous to the familiar notion of Jji(z) ',{) (27)
band-limited filtermg in conventional signal processing. The 0
concept of distributed modal filtering for flexible structures has
been demonstrated using distributed- effect sensors made of Thus, the previous theory can be used to see that choosing
piezoelectric film ],and was used to explain the robustness
properties of an L control system for a flexible beam using K

the holographic sensor [3]. K(z) Ao ,,(z), (28)
The usefulness of distributed sensors for modal filtering

is a result of the orthogonality of the mode shapes that are the where gi is the i'th element of G, makes the output of the fiber
basis for the set of filter weighting functions and the structure sensor equal to G7, as desired. By using two weighted fiber
shape functions. Choosing a set of modes, such as the Set sensors a first-order compensator can be developed to
B={ . (z) 10 < m < M, and selecting a filter weighting implement the desired control law.
functibM To illustrate these results, a four-mode model of an

Euler-Bernouli beam was considered. The tip displacement and
K(z- m jm(Z) (22) strain energy for an inital condition respome of the open-loop

M-0 system are shown in Figure 1. The response for a closed-loop

system using a full-order compensator, where the measure-r.--
composed only of modes contained in B, the filtered distributed Lq were obtained i fiber sensors in a manner ana-

s that described above for the functional observer, is sL
Figure 2. Figure 3 shows the response for a closed-loop-
using a functional observer. The response is almost identic,.

Z(t)=_ ki " (23) that of a full-order compensator, even though the compensatot
order has been reduced from eight to one. The weighting
functions for the fibers used with the functional observer are

Because the mode shapes are mutually orthogonal, any modes shown in Figure 4.

contained in the distributed measurement y(z,t) but not One problem usually encountered in using functional
contained in the set B are removed by the filter and do not observers is that the direct feedthrough of the output results in
appear in the filtered output. Modal filtering is particularly excessive noise in the estimates. Fiber sensors, however, have a
useful for reducing observation spillover when the control very high signal to noise ratio, and this should not be a
system is designed using a reduced order model of the system problem. Also, as discussed in Section 4.3, spillover noise will
since it permits removal of any unmodelled system dynamics not be a problem. The major tradeoff between a full-order
from the measurement signal. compensator implemented using point measurements and a

first-order compensator implemented using weighted fiber
4.3 Disibutedmi Cains sensors is between the complexity of the compensator and the

To control a system described by the second-order complexity of implementing the distributed gain in the fiber.
differential equation (3) using a single actuator, a standard
approach is to rewrite the equation in first order form 5. fmdmiwa

In this paper, we have shown that by filtering the
-A Z + B (24) output of a distributed sensor, we can produce a scalar output

z = C: corresponding to any desired linear combination of the system

using the state Z= T 41T. A state feedback gain is computed position states. This result illustrates one of the advantages of
distributed and distributed-effect sensors over point sensors -

so that the control u = -kz provides the desired performance, the set of scalar outputs realizable using point sensors "s A
Then, since the entire state is not available for feedback, a subset of the set of outputs realizable using distributed sensiz.
state estimator is constructed to provide an estimate of z, and flt
denoted :, and the feedback u = -ki is used. A full-order state a ing.

estimator would be of dimension 2N and have the form We also described three applications of distributed
sensor filtering. Other applications that are currently under

= (A - LC) i + B u + L z. (25) investigation include the use of distributed filtering for the
placement of transfer function zeros, and the optimization of

If z is of dimension m, then a reduced-order observer of measures of observability.
dimension 2N-m can be used to provide an estimate of = To
reduce the compensator dimension still further, consider the A
case where s = q. It is easy to see that the observability index
for such a system will be 2. Thus, a functional observer of This work was supported in part by NASA Grants NAG-i-
dimension I can be constructed [61. A functional observer has 1006, NAG-1-1043 and NTG-5004, ONR Grant N00014-89-J-
the form 3123, and ONR/DARPA contract N00014-58-M.

=Fr+ Gz+ Hu (26) ZdZw
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the state feedback gain. The previously developed theory can Claus, "Distributed methods for controlling flexible
be used to show how such measurements can be made on an structures," in &0 oing.f am 52MCRInh VPI&-CU
Euler-Bernouli beam using two optical fiber sensors. S=mawa ga Dn ai and ConrlI f LaSgRI=

Strcturm, May 1989, Blacksburg, VA.
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Abstract

In this paper the method of using Fuzzy Logic is explained and an application of Fuzzy
Logic Control (FLC) to actively damp the vibrations of a cantilever beam is investigated. The
results of this method are compared to controlling the structure using optimal control. The
primary advantage of FLC is that satisfactory control can be achieved without detailed knowledge
of the plant. A by-product of the method is that the FLC is able to utilize the maximum control
effort available at the actuator.

Introduction

Since the early 1970's it has been proposed that the theory of 'Fuzzy Logic' could be
used to design control systems for poorly modeled and/or complex systems [11. To date many
successful applications have been documented [2,3,41. The principal advantage of a Fuzzy
Controller is its performance and simplicity of design in the absence of accurate plant models.
The typical Fuzzy Controller is a combination of Fuzzy Logic and rule-based expert systems. The
"rules' express the control policy much as people do. The fact that rule conditions are stated in
"human" (qualitative) terms, such as "the error is moderately large', rather than in "computer"
(quantitative) terms which require numerical ranges, converts the use of very few rules into an
effective controller. Lee [51 provides an excellent tutorial paper with a comprehensive collection
of references.

The past few years have witnessed an exponential growth in the applications of Fuzzy
Control; however, the major interest has been in Japan and Europe and not in the U.S. where the
concept originated. Outside of academic investigations the use of Fuzzy Control seems to have
been relegated to household appliances, printers, and other 'simple" controllers. One exception
is that of the controllers used on some of the Japanese trains (6]. But in all cases the applications
appear to be slight improvements in controllers which could have been designed by classical
techniques.

A Fuzzy Logic Controller (FLC), see Fig. 1, can be viewed as a way of converting expert
knowledge into an automatic control strategy without a detailed knowledge of the plant. The
input to the FLC is fuzzified, or in other words, converted to the Fuzzy
Set Domain. Then it is processed by the Fuzzy Inference Engine and a Fuzzy output is obtained
(in the form of a sum of weighted Fuzzy Sets). That in turn is defuzzified, or converted back into
a number in the real Domain which is used as the control input to the process to be controlled.
To provide a benchmark for comparison, the example system will be controlled using an observer-
based controller. With observer-based control (Fig. 2) the closed loop system consists of an
observer to reproduce the states from the output and state variable feedback with gains derived,e.g. by optimal control, to provide the feedback correction.

This work was supported by the Office of Naval Research under Grant N-0001 4-89-J-31 23.
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Both of these ideas wil! be applied to actively damp the vibration of a cantilever beam.
A system will be assumed for simulation purposes and both control strategies will be compared.

Fuzzy set theory

Fuzzy set theory was developed in an effort to deal with the uncertainty and
impreciseness that is abundant in the real physical world. It was expected to model human
reasoning, the ability of the human mind to deal with vague terms, and the ability to make
decisions based on imprecise data.

The definitions on Fuzzy Set Theory are as they appeared on Zadeh's[B) seminal paper;
A Fuzzy Set is a class of objects with a continuum of grades of membership. It is

characterized by a membership (or characteristic) function pA(x) which assigns to each object, a
grade of membership ranging between 0 and 1. More formally:

Let X be a space of points and x in X (X is also called the Universe of discourse).
Then a Fuzzy set A E X is characterized by a membership function uA(X) which associates with
each point in X a real number in the interval (0, 11 with the value of uA(x) at x representing the I

I
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3 *grade of membership" of x in A.
An ordinary set then is a set where

/JA(x) only takes the values of 0 and 1 on X.
An ordinary set could be viewed as a

special case of a Fuzzy Set, or a Fuzzy Set fA (z) mmbf faod/m
could be viewed as an extension of an
ordinary set. 1

Two fuzzy sets are equal if they have
identical membership functions for all objects AN)

-- of X.
Xl

f A-B ,A - - () - p,,(x),VxEX

The complement of a fuzzy set A is
denoted by A' and is defined by

-- PAW ) -1 - PAW ). V X e X

A fuzzy set A is contained in B (or is a subset of B, or is smaller than or equal to B) if and
only if the membership function of A is smaller than or equal to the membership function of B for
all objects of X.

A c B - IA(x) & pl x), V x e X

-- Union: The union of two fuzzy sets A and B with membership functions pA(x) and p3 (x)
respectively is a fuzzy set C written as C = A U B where the membership function of C at x is
the maximum of the 2 membership functions.

px) - max[PAW ).()I. V X 'E X
or in abbreviated form

- IAA(x) V ~~x

(The union of A and B is the smallest fuzzy set containing both A and B)
Intersection: The intersection of two fuzzy sets A and B with respective membership

functions uA(x) and ue(x) is a fuzzy set C written as C = A n B whose membership function is
related to those of A and B by

- ml '4PA(X),lIW- V x E X
or in abbreviated form

px)- IAA(z) A pdx)

(The intersection of A and B is the largest fuzzy set which is contained in both A ard B).
The Algebraic product of two fuzzy sets A and B is defined by their membership functions

as pA(x) =,A(x)#(x). (Note AB Q(AfB)) and the Algebraic Sum is defined as PA+(x) =PA(x) +p*(x)
(Note that ((AUB) Q (A + B)).

A normal fuzzy set is a set that attains the maximum of 1.
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A convex fuzzy set is a set such that (see Fig. 3)

ACAx1 + (1-Wx k mln(lLAx 1),p2 .) xI, x2 e X. I E[0,11

A fuzzy number is defined as the fuzzy set which is both normal and convex (Note that
the set in Fig. 3 is a fuzzy number).

A fuzzy partition on the universe of discourse is the association of each linguistic variable
with a term set on the universe of discourse (PB,PM,...). So a linguistic variable takes on values
of different fuzzy sets defined on a certain universe of discourse. An example of a fuzzy partition I
of the input space (of the fuzzy controller) is given in Appendix A Figure 1. You can note that the
primary set of this partition is a triangular set.

The last definition we are interested in at this time is the concept of a fuzzy relation or
fuzzy implication which is a generalization of the concept of a function. An n-ary fuzzy relation
in X is a fuzzy set in the product space X x X... x X. For such relations the membership function
is of the form PA(Xl,X2 .... X,) where xEX, i= 1,2,...,n. This definition is the one that permits the
use of fuzzy logic control.

Fuzzy Logic Controller

Control was one of the first areas where Fuzzy Set Theory was applied and it has enjoyed
a great deal of success in applications where the systems to be controlled were ill-defined, or
where the process dynamics were more or less defined by the experience of an expert operator.
Most of these systems have a very slow response but with the emergence of Fuzzy Logic chips
the ability to control faster responding systems was realized.

The FLC provides an algorithm which can convert the linguistic control strategy based on
expert knowledge into an automatic control strategy. The essential part of the FLC is a set of I
linguistic control rules related by the dual concepts of fuzzy implication and the compositional
rules of inference (Lee[5]).

The FLC consists of 3 components (,see Fig. 1): U
A. The Fuzzification interface
B. The knowledge base and the decision making logic
C. The defuzzification interface

A designer has to take into account many design variables that have to do with how each
linguistic variable is defined and how you go from the Real domain to the Fuzzy Set domain and
back.

A. The fuzzification interface
1) measures the values of the input variables (output and input process variables).
2) performs a scale mapping that transfers the range of values of input variables

into corresponding universes of discourse. I
3) converts the input data into suitable linguistic values which may be viewed as

labels of fuzzy sets (or linguistic hedges, basically the labels PS, NM etc).
B. The knowledge base comprises a knowledge of the application domain and the

attendant control goals.
II data base provides necessary definitions
2) rule base characterizes the control goals and the control policy of the domain

experts by means of a set of linguistic control rules. U
The decision making logic is the heart of an FLC; it has the capability of simulating human

decision making and of inferring fuzzy control actions, employing fuzzy implication and the rules
of inference in the fuzzy logic.

C. The defuzzification interface performs
1) scale mapping which converts the output variables into corresponding universes I

I
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APPLICATION OF FUZZY LOGIC CONTROL3 of discourse.

2) defuzzification which yields a nonfuzzy control action from an inferred fuzzy
control rule.

The fuzzy control rules, also known as linguistic description rules have the format:Iif (a set of conditions are satisfied) then (a set of consequences can be inferred)"
and they are implemented by a fuzzy implication (a fuzzy relation).

Very important to the database is the normalization /discretization of the universes of
discourse, the fuzzy partition of the input and the output spaces, the completeness of the data
base and the choice of the function for the primary fuzzy set. For the rule base it is the choice
of the process variables the source and derivation of the fuzzy control rules, the types of the fuzzy
control rules, their consistency, interactivity and completeness. These are the guidelines a
designer has to follow and take into account in order for the FLC to be effective.

A popular way for deriving a real output from the system (defuzzification) is the method
of the centroid. Suppose that 2 or more rules apply in a particular case the jth applied rule being
(Appendix A Fig. 2):

iXl is 1IJ x2 is 1.. the y is V

then the weight wj is given by
IIwj - 1,A) A IW,, A ... A 1,v.)

3 or for simplicity

. - ,A) * ... 1-991

Then respectively B" (the Fuzzy output set) for both cases is

B-UwjB1 ,j and 8*-E wj
The real output y can then be inferred by taking

3fr(y) y dy

fa'-&() 'd'

3 The first case is what is known as the max-min convolution, and the second is the sum-product
convolution.

* System

For simulation purposes the equations used were of a cantilever beam where both the
actuator and the sensor were located at the tip of the beam. The first 3 modes were used. The
system was then discretized and the discrete system was simulated. The sampling frequency was
5 KHz.

From VanLandingham [11] the equations of the continuous system were:

X -A X + B u
y -CX

In the next section wa present some comparitive results using FLC and a standard state feedback
controller to damp the first mode of a three-mode system.
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Simulation results

The input to the FLC is the output of the process and the change in the output (since
setpoint = 0), that is:

error = y(k) I
change in error = y(k)-y(k-1)

The output of the FLC is the control
effort to be applied to the process and the a

scaling factor to the output is the maximume tb aPB tPM PS R NS NM NB
control effort that the actuator can supply.
The scaling factors on the inputs are: the PB NB NB NB NB NM NS ZR
position of the peak of the PB term, the I
term set of the Fuzzy partition, and the PM B NB NMH NS ZE PS
input Universe of discourse (Appendix A.
Fig 1). ]S NB NB NMJ[NS '- ]PS PM[ IThe rule base used is as appears in

Fig. 4 and is of the form: if y is "rowi" and ZR NB JNM NS IZ PS ,PM PB
ce is "columnj" then output is
nelementjij". I

The defuzzification strategy used is NS NM S E Z PS PM PB PB
the centroid method described above using
sum-product convolution. NM NS ZZ PS PM PB PB PB I

The results for the simulation of the
controlled system using different scaling NB Z PS ]M PB PB PB PB
factors on the input and output spaces I
appear in the final four figures. The 3

numbers appearing at the bottom are the FIGURE 4. Rule Base
scaling factors on the error(y), the change
of error, and the output(u). As the output scaling factor is increased (the control effort applied),
the system responds faster, however if it is increased too much the response does not settle to
the set-point. If the input scaling factors (especially error) are decreased, finer control is obtained
and the response is faster. The two scaling factors on the output and the input, could be tuned I
and then be reduced as the set-point is approached, thus continuously driving the system to the
set point. These scaling factors could also be saved in the form of look-up tables, increasing the
number of rules of the system but also increasing the adaptability of the controller.

For the optimal control simulation the assumption was that there was only information on
the dynamics of the first mode (since FLC does not use any knowledge of the system dynamics).
The response was never driven to the set point, but only oscillating around it Fig. 8). Also with
time the oscillations grew due to the "spillover" effects.

Conclusion 3
The design of Fuzzy Logic Controllers was reviewed. The FLC is an inherent nonlinear

control method which implements a set of linguistic (i.e. understandable to a human) rules. It
typically performs much better in the absence of exact knowledge of the system dynamics and,
additionally, can be tuned to give an optimal performance for a particular system. A comparison
was made between the FLC and a standard optimal state feedback controller. The FLC is shown
to have a clear advantage over the Optimal Controller because information on the system
dynamics was restricted to one mode in the three-mode system.

U
I
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FIGURE 5. FUZZY Controller
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FIGURE 7. Fuzzy Control
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Abstract

This paper presents a simple computational algorithm for 1 0 ...

determining a state space model of a MIMO Discrete System from
Input-Output Data . The obtained state space model is in a Co = 0 1 0 ... (6)
Pseudo-Observable Canonical Form. Unlike, all other deterministic
identification procedures, the approach suggested in this paper, does 0 0 1 0 ...

not require structural identification [5] [6] , i.e, determination of a L

unique set of observability indices. Instead, an it has been presented From ( 5 ) & 6 ), it can be concluded that A0 has only p rows
elsewhere [1] [2], a MIMO system could be represented in pseudo- with njn-zero and non-unity tlements. Location of these rows
observable canonical form, based on a set of admissible pseudo- . = 1 s2, ..... I sP }are uniquely determined by the set
observability indices [31. of assumed pseudo observability indices ni.The remaining ( a - p)
Introduction rows of A0 correspond to the last ( n - p ) rows of the Identity

matrix In . The first p rows of this Identity matrix correspond to
Consider, a linear time-invariant discrete system. It is known, [1]- the rows in C0 . Matrices B0  and Do do not have any specific
[3], that based on a selected set of admissible pseudo observability structure.
indices* bl .. bM

g = n, n 2 , .. , np ; p being the number of inputs, any ...

nth order MIMO discrete system could be represented by the Bo - (7)
following pseudo-observable canonical form :

z(k+l) = Aox(k) +Bo(k) (1)
y (k)=Coz(k)+Dok() ; (2) Pat,.. brnmI z(0)= Zo (3)

where xe Rn , a e Rm , y c Rp , are the state, input and output d l " dim
hvetors respectively , while Ao, B[, Co and Do are matrices of Do (8)

compatible dimensions. In [3], it has also been shown that the totald 1 ... dp.

*number of sets of admissible pseudo observability indices is less
than Identification Identity
oreualto P ) ( -p It is assumed, that the Input-Output sequences:

The pair ( A0 , Co) in the pseudo observable form is characterised
by the following structure. {.j (k) , y(k)J; k=O, 1,2. N-1

0 .. 0 1 u(k)= uk; Y(k) = I:

0 ... 0 1 corresponding to an nth order system are available. The approach
suggested in this paper, determines a system representation

all . ... a1 2  ... In satisfying (1) - (3), where A0 , B6, Co and Do are given by ( 5 ) -
( 8 ). In order to determine non-zero and non-unity parameters in

0 0 1 Ao, B0, Co, Do and r o the following procedure is suggested.

A0 = From (1)- ( 3 ), the following equation is obtained :

0 ... I Y(k)=ox(k) + HU(k) (9)
where in ( 9 ) the matrices Y( k) and U( k ) are (l+l)p and (l+1)p

21 "" 2
i '" 02n column vectors, while Qo and H are matrices of the dimensions

0 0 0 0 1 (1+ l)px n,n x land(l+ 1)px (1+ 1) respectively. Qois

This work is supported by the Office of Naval Research under
p .... Grant N-00014-89-J-3123.



I
the observability matrix of the pair ( Ao , Co ) and I = a-p+l. where Ulk contains the first m ( a t + I ) rows from Uk, wAere
The structure of these matrices is as follows r

uk Yk Co' =}.{ },for= i. , and B'= 2 - A'H.,

CoAo The matrix [ B' A' ] will be called the 3
parameter matrix ", since it is obvious that it depends only on

the elements of Ao , Bo, CO and Do . Using a set of q available
measurements, where q satisfies the condition,

10) n+(at+1
) m< q, we define: 1

uk+i Nk+i CoAo= Y2k Y2(k+1) Y2(k+q-) (16)

Uklk Ul(k+tl) 1
uk+I ,k+1 1010 Z= k ... .. (17

D 0 ... 0 The dimensions of Yand Zare px qand (( a+1 )me+a) xq,
respectively. Using the Least Squares Method ( 7 ], from ( 15 ) -

CeBo D, ... 0 (17), the parameter matrix can be expressed as:

"'oAoBo  CoB o  .. 0 [By A']= YZT(ZZT)1 (18)

where, in the case of a sufficiently rich input signal u(k) and
S= (11 ) admissible set of pseudo observability indices, Z is a full row rank

matrix. Since, we have A', the matrix AO is determined directly
from ( 18 ) and ( 5), while CO is known to have the structure as

0 0 in (6). I

D, 0 Determination 2f g

CoAO'lBO ... COBo Do It can be easily shown thato R= Qc e B*

Elements of vectors ., x and ,kI are related to the elements where Qre = Be AoBe AnO Be -
in A 0 , Bo , CO and to by the set ot ( I + I ) p scalar equations
given by ( 9 ). It could be verified that among ( 1+1 )p rows of The columns 6ej of( axp) "equivalent input matrix", Be,
the observability matrix Q0, there are n rows equal to a rows of In
and p rows corresponding to the non-zero, non-unity rows from A0 . contain ( n -1 ) zeros and only one unity , whose location is
The locations of the n rows corresponding to In and the p rows
corresponding to A o are uniquley determined by the assumed set of determined by the integers . of the set 9j , where Ao has non-zero,
admissible pseudo-observability indices. aNow we select from the vector Y( k ) subvectors Ylkand 2k non-unity rows. B is formed by the following partitioning of B'.
corresponding to the n rows in Qo containing rows equal to In and
the p rows in Qo containing non-zero, non-unity rows from Ao. B' i I 19)
Let the corresponding rows from H be H1I and H2 . Then, from L
equation ( 9 ) the following equations can be formed. _'

Ylk zk +HI Uk (12)..

Y2k= At'k+H 2 U (13) [ 5)
B'

all ... ain Note that the dimensions of B1, B* and 'i i = 0 ......
14) arep x m(n+l),p( *'+I ) x mandp x m, respectively.

Determination of.Rg
h '= ... I From the definition of transfer function matrix we have: 3

Therefore, eliminating the state vector rt from 12 )and (13 )the
following Identification Identity is obtained; G(z) = F 1 (z) N(z) = Co( Iz- AD)'BO + Do (21)

Ui& 1o = FI(s) D(z)- Co ( Is- Ao Y'IBO ( 22 )

Y2k B  A ... (15) whereN(z) and F(z) are(px m)and (px p)co-prime

Y Ylk polynomial matrices [4] , where 3

I



I I l .of admissible pseudo observallity indices which sati the-

i=0 $=O"j=1

icould be calculated by evaluating the r.hs, of ( 22 ) for an arbitrary 11'2 ri

, a u o Si e a di re e t e sy t m h s n ei e v uetit follows that F0 and A 0 are alw ays non-sin gular . From 4 )] it B uild the ( n I + I )x N , m atrix U , w here

can be concluded that No- YIO ( 19 ) and F0 is given by the,

first p columns of A', leading 'iny to: N1 < n - ( n' + ),defined by;

D. = Fo-' No + CoAo'1 Bo (23) U(0) ... U(NI-1)

Determination f 1 onditi xg Uz. U() ... U(N(27)
I The initial condition vector to ,corresponding to (1 )-(3),

could be calculated directly from (12 ) , by setting k = 0 i.e U(n') ... U(Nl+nf-l)

.= Y - HI U0  (24) If the matrix U is of the full row rank, i.e

Selector Veto Aleorithm pi U I = ( ny + 1 ) m , (28)
then the input sequence is" sufficiently rich" and is capable

1. Define a Set n1 . p, of admissible pseudo of exciting all the n modes of the system to be identified.
observability indices where p is the number of outputs of the If p i U 1< (n' + 1) m, then either:

system. p ( a ) Select another set of pseudo observability indices having
2. Set n = ni ; where n is the order of the system, a smaller value of n r

or
(b ) Select a different , more rich input sequence which would

S=--- max { ni  and np =-(n1+1)*p . satisfy the richeness conditon ( 28).
3. Set i 1.4. Set h i . 3. Using the selector vector algorithm determine the follow ng:

5. Forj=lthroughnp,Set 'x(h)=ni+ l-j, h=h+p. (a) A set ofintegres,
6. Seti=i+1. (97. If i>p,goto 8;else,goto 4.

8. Set it = 0,i 2 = 0 , k= 1.
9. If Vx ( k ) < 0 , go to 11; else , go to 10. corresponding to the locations of non-zero, non-unity rows
10. Set it= it +1, b(i 1 )=k. ai = I ai l ... ,ain1  (30)
It~1. If'x-(k) & 0, go to 13; else, go to 12.12. Set i2 = i2 + 1, ( i2 ) = k. of the matrix A0 of the pseudo observable canonical form.
13. Set k=k+1. (b) A set of ( n - p ) integers Ic ( complement to the
14. Ifk!np,goto 9;else, goto 15.
15. Set q p + 1, ia = 0, ip = 0, ii = 0. set gJ ) corresponding to the locations of the last ( n - p)
16. Set ip ip + 1. rows from the Identity matrix In in the matrix Ao .
17. If Vx(q) < 0,Setip=ip- I andgoto 21; else, go to 18. (c) A set ofnintegers:
18. If Vx( q )96 0, Set i. = i. + 1; else, go to 20. h.
19 . Set c ( i ) p  

(31)
2.Set is= la +I, ( ia ) =ip,q =q + .

21. Set q a q+ ,i corresponding to the location of the n rows of In in the
22. If q :5 np , go to 16; else, Stop. observability matrix:

For p = 3 and n= 1 ,4,2 ,the above suggested Qo (32)

algorithm gives the following selector vectors:
1-{,5,71, g, ={2,3,4,61, LooAo n-

b I{,2,3,5,6,8,11}andr ={4,9,14}. (d) A set of p integers;

|denUflation Agrithm d = 1 ,1 - p}i }, (33)

1. Given an Input-Output sequences u ( k) y ( k corresponding to the locations of the rows a in the
k = 0, I, . . , N-I, correspondig to observability matrix Qo .

an nth order Linear MIMO discrete system. 4. Build the p ( nt + 1 ) x N matrix Y , defined by;
u(k) E Rm  ;y(k) E Rp  (25) [Y(O) ... Y(N
where 1 <m <n and < p < n. Y= J (34)

2. Assumeaset = 4 np ,(')... Y(Nt+n'.)



5. From the matrix Y select the ( n x NI) matrix YJ with a

rows corresponding to the elements in bj 
. This selection could p xm) 0. ,e A 0 B B ] Le: 3

be represented by the following premultiplication; B' 110 . , J (40)

12. Let the columns bei of the ( n x p ) matrix Be, w equivalent 3
input matrix, contain ( n - I) zeros and only one unity,

where Sh is the " selector matrix" of dimension ( n x N 1 ).

The kth row of Sh have ( Ni 1) zeros and a unity at the whose location is determined by the integer ok of the set u
h . 13. Build the [ n x ( no + I ) p I controllability matrix Qc of

location specified by the integersh0ofrthe set h-j.th ' A 1k the pair { Ao , Be}:

6. From the matrix Y select the ( p x NI ) matrix Y2 with p =n I
Qc =[Be AoBe .. Ao" Be] 4)rows corresponding to the elements in . This selection could

14. The input matrix Bo of the pseudo observable canonical form
be represented by the following premultiplication; can now be easily determined from Bo = QO B* (42)3

Y = Sr X Y (36) 1
where Sr is the" selector matrix "of dimension ( p x N I ) . ...

The kth row of Sr have ( N I - I ) zeros and a unity at the w.h t

location specified by the integers 4 of the set B1

F'-' The " direct path " feed - through matrix Do in the pseudo
7. Build the matrix Z ; Z (37) observable canonical form is determined in the following way.

Y 15. We know that, 3
If the matrix Z is of full row rank, then the selected set of G(s) = CO ( Is -Ao 1 Bo + Do = D-( s ) N ( s ) for all s,
pseudo observability indices are admissible, or (44)

Do=D'( s ) N(s) -Co (Is-Ao) - Bo.
8. Using the Least Squares algorithm determine the Since the matrix Do does not depend on s, Do can bedetermined by evaluating the above equation at s = 0, i.e

p x [( ne -t 1 ) m + n] " parameter matrix" Q, 0 = 1 0 0)+ 0 A 1 B.(5
whreQ 1: ' aisyigDo = D'I( 0 ) N ( 0 ) + C. Ao °1 Bo . (45)

16. From the identification identity it can be seen that
UN(o)=B' andD(O)=A ,where(px p)matrixA,"

Y 2 =Q XZ= BI i A ] • (38) contains the rst p columns from A', i.e:

A = [ A ] (46) m
9. B'andA'arepx (n + 1) mand(p x n)matrices, 1  1

respectively . The p rows in the matrix A' correspond to the 17. The initial condition vector x(o) =xo can be determined by
non-zero, non-unity rows, ( 30 ) , of the matrix Ao. Thus the following equation
having determined the parameter matrix Q , i.e the matrix
A', 5(o) =xo-H I 6(o) (47)3I w

where ' (o ) is the first column of the matrix YI and , ( o)
A(39) is the first column of the matrix U while 111 is formed as

follows ;

ll = Sh X H (48)

The matrix Ao in the pseudo observable canonical where the ( n x N 1 ) selector matrix Sh is given by ( 35). 3
form can be easily determined using the sets 4nd gt. Illustratior &Mzk

10. As it has been mentioned earlier, the matrix Co in the pseudo In order to generate the input/output sequence { u(k), y(k) 3
observable canonical form is always of the structure is, which will be used in the indentification algorithm the followingexample is considered.

Co = l 0], i.e it contains the first p rows from the * = A x + B u
y = C x + D u , x ( o) = (49)

identity matrix In. The input matrix Bo is to be determined where
by the following procedure.

11. The p x ( n' + 1 ) m matrix B' is partitioned into no +, 3

I



10000°  1 F 1 s0. .00 . 003 .
0.2 0 0 0 .011 2 .299 -.00 .036

A= 0 0 .3 0 0 B= .021xO= IAo=1 .000 .000 1.000 .000
0 0 0 .4 0 0 1 2 [000 .000 .000 .000o0 0 0 0 .5 o01 1 (0 .12 .002 .01 -33 1.10I (50)

C 0 1.11.010 0 a] =[ 01 The equivaent input matrix Beused incalculating BOis:

I1.0 0.0 0.0 [1.000 1.0101
0.0 1.0 0.0 0.020 1.010

i.e n=5, m=2 and p=3. For the input sequence u(k), the following Be = 0.0 0.0 0.0 leading to Bo = 1.030 5.000
mx N , N = 17 , matrix consisting of pseudo random numbers is 0.0 0.0 0.0 0.108 1.500
selected. .0 0.0 1.0 0.012 0.550

0.448 2.223 1.885 1.900 0.380 2.349 0.827 -0.415 0.654 The initial condition vector is calculated by using step 17 of
1.817 1.792 -0.279 0.382 0.776 -0.391 2.266 -0.25 0.091 the algorithm;

u(k) = 1.020
0.423 0.782 -0.270 -0.064 1.182 1.151 0.907 0.616 | 1.020

-0.249 2.489 1.394 1.922 2.371 2.360 1.876 2.172 xo = 7.000

I 2.100
The ouput sequence y ( k ) corresponding to ( 49 ) and ( 50 ) is: L 0.750

1.020 1.491 4.184 2.025 2.488 1.413 2.096 3.326 The same procedure is followed for the other three sets of
y(k) 0.572 4.357 4.382 2.408 0.957 3.313 0.769 1.873 admissible pseudo obeervablitiy indices and following results are

4 7.000 10.722 14.675 4.768 5.197 5.556 2.122 12.472 obtained:

0.105 0.736 -0.601 3.235 1.464 2.026 3.782 3.916 3.197 2u - {,,2 },,2.. {,12, }, = {12= 2,
1.309 -0.120 0.613 2.084 2.209 3.769 4.349 4.277 3.5432

3.012 2.335 -0.965 13.112 10.489 12.986 17.277 18.285 15.977 b2 ={ 1,2,3,,6 1 4,8,9

According to [3], it follows that in the case of n = 5 and p = 3 099 .099 .002 -.331 -. 003
the total number of possible sets of psuedo observable indices is IT= -equal to A .000 .-.120-1. .70 .00

1= (5-1)! =6. These 6 sets of indices are ( 1,1,3 ,01 5.1 .1 .0

(3-1)! (5 - 3)1 12 1.361 .331 .0 00 .0
1,2,2) , 1 2,1,2 ) , ( 2,2,1 ) , (1,3,1 ) and { 3,1,1 }. In case of BT= 112 -.403 -.680 1.010 1.000 .000

50 ) , it can be concluded that the sets { 3,1,1 ) and { 1,3,1 ) 1.I02 17.857 20.698 5.00 .000

are non-admissible and that the set ( 2,2,1 ) corresponds to the 0 r
unique set of pseudo observability indices [31,[4] and [6]. .099 .099 .002 -.331 -.003

.000 .000 .00 1.000O 00

Using the available input/output sequence and applying the above Ao= .000 .000 .000 .000 1.

mentioned algorithm for all the admissible sets of pseudo 41 5.881 -. 101 -19.7 .00

observable indices, we get : 1 58j

£-eL i l 1,1,31. Using 1, the selector vectors algorithm p1.0 0.0 0.] [1.000 1.010

g- " 0.0 0.0 0.0 0.020 1.010
gives Be= 0.0 0.0 0.0 Bo = 1.030 5.000

sl= 1,2,5 s,={3,4 h 1,2,3,6,9 & 0.0 1.0 0.0 0.06 o.3o4
. 0.0 0.0 1.0 0.108 1.500

K1 = { 4,5,12}. 1.020 1

After building the identification identity ( 15 ) & (18 ) , the 1.020

following parameter matrix Q is obtained as in ( 38 ), where W Xo = 7.000
0.308

and A' are as given below; [ 2.100

1.098 .000 .003-.015.017 1"
AIt= [002 .299 -. 005 .036 -.051 3 33.012 .002 .041 -.3831.103 m ,I { 2,1,2

Br=.014 1.061 -.017 -.084 .000 .000 § {25} C 1,3~ 10={ 1,2,3,4,6 1 3 15,7,9).
1i.. .310 .908 1.052 .254 .000 .000 29 .29 .05-.0'.1.2T;9800.298o .00 -30-01
.285 .808 -1.028 -4.015 1.030 5.00(j AT=[ 020.000 .000 .300 .000

5.82 .020 -.201 -59.4 .902Thus the system matrix Ao in the pseudo observable canonical

rormis;.753 4.112 1.000 .000 .000 .000
BT= .200 -.201 1.00 1.010 .000 .000

0.3 -63.0 1.030 5.010 .000 .000



I
.000 .000 .0oO 1.000 .002] 2 . Bingulac, S. ,!and Kzolica, Rt. v. (1088 An
.298 .298 .005 -3.02 -.010 Algorithm for Simultaneous order and paramter identification in

Ao= .000 .000 .000 .000 1.00C Multivariable systems, IFACS : IFORS Symposim - Beiiin
-.020 .000 .000 .300 .000-5.82 .020 -.201 -59,4 .902I 2

.00 -20 5. .0]~d--iingulac, S ., and Krtolica , R -V.- ( 1987) On 3
0.0 0.0 0.0 1.000 1.010 admissibL~y of pseudoobservability and pseudocontrolability
1.0 0.0 00000 .f indices, I=E Trans. At. Control sU3, pp. 920-922.

Be=  0.0 0.0 0.0 Bo = 1.030 5.000
10000.0 0.00 0.102~idcs Li rn ~& nz1~ p.9092

0.0 1.0 0.0 0.100 0.102 [ 4 ). Chen, Chi-Tsong, Linear System Theory and Design.,
.0 0.0 1.0 0.108 1.500 (1984 ) ,11olt, Rinehart and Winston, NY. I

[ 1.0201 (5 . Shrikhande, V.L., Mital, D. P. and Ray ,L. H_
1.020 (1980 ). On Minimal Canonical Realization from Input-Output

x0 7.000 Data Sequence, MME 'Tran Aut. Control : 25 , pp 309-312.
0.104

2.100 [ 6 3. Luenberger, D . G. ( 1967). Canonical forms for Linear

Multivariable Systems, EEE Trans, Ant. Control-12, pp 290 - 5
QaiY o= 1 2,2,1J. 293.

~4 { 34,5 , 12 } h={ 1,2,3,4,5 }& {6,7,81. 7 3. Sinha, N . K . and Kuszta, B3. , Modelling and
Identification of Dynamic Systems (1983), Van Nostrand

T 29.2 29.2 .5 -296.0 -98 Reinhold.
AIT= .020.000 .000 .300 .000 i

L000 -. 120 .000 .000 .700

p69.8 402.9 97.9 .000 .000 .0001
B#T= .200 -.201 1.000 1.010 .000 .000

112 -.403 -.680 1.010 1.000 .0 0oj

[000 .000 .000 1.000 001
.000 .000 .000 .000 1.000

A,= 29.2 29.2 .500 -296 -98

-.020 .000 .000 .300 .000
.0o -.120 .000 .000 .700

0.0 0.0 0.0 [.020 1.010
0.0 0.0 0.0 0.020 1.010

Be= 1.0 0.0 0.0 B= 1.029 5.000
0.0 1.0 0.0 0.100 0.102
0.0 0.0 1. 0.006 0.304

1.020
1.020

Xo= 7.000

0.104
0.304]

Conclusion

The main purpose of this paper is to show that in identifying i
MIMO systems, the number of possible state space representations
corresponds to the number of admissible sets of pseudo observable
indices and that one of these sets, not necessarily equal to the
unique set of pseudo observable indices , leads to the most I
contvienient representation involving manipulation of well

conditioned matrices. In this case the matrices Ao and Bo have
elements with relatively small absolute values, which can be
verified by comparing the Case I with the other three cases in the
above illustrative example.

( I I . Gevers, M. , and V. Wertz ( 1982 ). Uniquely identifiable
state-space and ARMA parametrizations for multivariable linear
systems, Automatca. 2L pp. 333-347.
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Abstract

This paper presents a simple computational procedure for stabilizing lightly damped systems by

infinitisimal shifting of th real parts of the eigenvalues of the system using a proportional output

feedback regulator matrix. The shifting of the eigenvalues is achieved by continous increments in the 3
real parts of the system modes. The output feedback regulator matrix performing the shifting is

obtained by solving the Lypanov Algebraic Matrix equation. This approach facilitates stabilizing any

particular or all modes of the system by shifting the corresponding eigenvalues as far as desired from

the imaginary axes.

I
I
I
I

I
I
I
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I " A Computational Prcedure f StJilizing Lightly Dare Systems

3 Consider a state space representation of a linear time-invariant multivariable dynamic system.

k=Ax+Bu ; y = x+ u (1)
Swhere x E Rn ; u E Rm ; y E are the state, input and output vectors respectively, while A, B,

and f) are the matrices of compatible dimensions with B and t of maximum rank , i.e

p 13 =m and pI 1= p , respectively. (2)

Without loss of generality the following assumptions are made:

[11 m -= U . (3)

[2] . All eigenvalues Ai , i = 1, . .. , n, of the matirx A are distinct and have negative real parts.

[3] . All eigenvalues Ai appear in complex-conjugate pairs, i.e Ai+l = , i = 1, 3, ... , n - 1 , where

SA oi=-'i +jw i and Ai+ l = - oi - 
j i "

[4]. The complex-conjugate pair { Ai , Ai+ 1 } ,will be referred to as the jth system modem.,

where j = 2 Thus, according to ( 3), in A there are p oscillatory modes,

m j -Ori  _+ ji ;J -= 1I , ... , p .

[5]. The system modes are arranged according to their magnitudes i.e:II m >lm2 I > ....... > Impwhere Imj = a'. 2 +-2A n

i With a sequence of similarity transformations ( appendix 1 ) , a given system representation

{ A, f3 , t , f) } can be transformed into the representation { A , B , C, D } where;

A = T T 1  ; B=T ;C = T and D = D. (4)

The matrix A in ( 4 ) has the following structure: 0 :I

ccQfl -D

where 0 and Im are ( m x m ) zero and identity matrices, respectively , while Qo and Do are

diagonal (mxn)matrices ,i.e: o = diag { wjn } and Do = diag {2o'} (6)

Infinitisimal Shifn 2f Real Parts f Eigenvalues A.

Using an ( m x m ) proportional output feedback regulator matrix K, i.e u = - K y ( 7)
the closed loop system matrix Ac becomes : Ac = A - B K C ( 8)

Partitioning B and C into ( p x p ) blocks B 1 , B2 , C1 and C2 we get

B= .. and C= Cl  C2  (9)

T st AB2J

The closed loop matrix Ac may be written as:



BIKC1  B1 KC 2  -B1KC 1  Im-BlKC2

Ac = A - ( 10)
k2KC1 B2 KC2  [fl°-B1 KC 2  -D°-B2 KC 2  (

The output feedback regulator matrix K surely affects all m. system modes , i.e all the system

eigenvalues Ai . The results of the above calculations are given in Appendix 2.
Consider the matrix Ac given by the following properties: [- +El E 1

3UAc = A+. ... ... ... .... (1

E2  D-12-EI

where the matrices 1 1, 2 and Ei , i = 1,2,3 , have the following structures:

, =diag{2611} , 2 =diag{2 2 } ; 1i 6' 1 1 and I Ei I i;i < 1. (12)
* I

Then, the modes m i.e the eigenvalues Aci , Aci+ 1 of the matrix Ac are such that

mni-m-j -= -o'j-6i. + j;b i=6 1+ 62 (13)

The quantities 6. could be interpreted as increments in the real parts of the modes mj. Comparing ( 10

) and ( 11 ), it can be concluded that in order to shift the modes mj to the position mC , the matrix I
K should satisfy the following equations:

BIK C1 + B2 K C2 = I + 2

or

KCI(C 2 )-1 +(B1)-B 2 K= (B 1 )1 D (C2)1 ;where f = +1 (14)

Note that the equation ( 14 ) is the Lypanov Algebraic Matrix Equation, which could be solved for the

unknown matrix K, provided that ;

( a ) . The matrices B1 and C2 are non-singular and,

( b ) . All the eigenvalues Abi and Ac. of the matrices ( B1 )'1 B2 and C1 ( C2 )-1 satisfy the

conditions \b i + \c 1=6 0, V i andj .

In case of ( 2) , conditions ( a ) and ( b ) are generically satisfied.

Defining 6 = diag { 2Aj }, <.j ' 1, the equation (14 ) could be solved for the unknown K. From 3
the equations (10 ) and ( 11) it could be concluded that the real parts of oc of the eigenvalues of the

closed loop matrix Ac, (8), will satisfy the relation: 3
0'c 7j + "j (15)

Stabilizing Lht Damped Systems. U
I
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Assume that the system ( 1 ) is lightly damped , i.e its eigenvalues are relatively close to the

imaginary axis. Also assume , that it is desired to move some of these eigenvalues farther left in the s-

complex plane. This could be achieved by a sequence of infinitisimal shifting of the real parts as

explained in the previous section.

The following algorithm is proposed:

[1 ]. Representation { A,, b, e3, bI6 of a lightly damped system is given.

Set the iteration counter k = 1.

The representation will be denoted as { A 1 ' B1 , C1 D1 "

Define a ( p x p ) zero matrix, Kt.

[2] . By the sequence of similarity transformations ( Appendix 1 , the representation

f{ ALkI3k, k, Dk is transformed into{ Ak, Bk, Ck, Dk ,( 4 ),

where Ak satisfies the property ( 5 ) .

[3 ]. Define a diagonal matrix b diag { 2 Ajk },0 _ 1. Non-zero/A. indicate

which modes are desired to be infinitisimally shifted to the left in the kt h iteration.

[4] . Solve the Lypanov equation, i.e

KkClk(C2k 1 + (Blk) B2 k Kk Blk)-N (0-1 17

Set Kt + K k = Kt .

[5 ] . Build the closed loop system representation { Ack, Bk, Ck, Dk }, where

Ack = Ak - Bk Kk Ck (18)

Modes mjk of the closed loop system in the kth iteration are related to the

modes mjk of ( 16 ) by the relation: mjk " mjk + Ajk

[6 ] • Increment the iteration counter by 1, i.e set k = k + 1 jk and set

Ak = Ac(k-l), Bk = B(k-l), Ck = C(k-l) Dk = D(kl)

[7] . If the modes of the representation { A, 13, f) I are sufficiently shifted stop, ELSE

Go to step [ 2 ] .

• Appendix 1 and 2 , an Illustrative example, the Flowchart of the algorithm suggested and

references will be included in the final version of the paper.
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I
Abstract

I The Gaussian sum estimation method developed by Sorenson and Alspach [1] is

investigated. An alternate development of the Gaussian sum density approximation

is given and a modified adaptive estimation structure is proposed based on the

-, adaptive Kalman filter scheme first presented by Magill [2], and extended by Moose

and Wang [3]. A necessary condition for effective estimation is examined [5]. Several
alternate configurations are proposed when this condition is not met. Simulation
results illustrating the theory are analyzed. A suboptimal method of tuning the

parameters of the adaptive structure is suggested.

Introduction
-- An estimation technique, applicable to both linear systems with nonGaussian

inputs and nonlinear systems with Gaussian inputs, has been developed by Sorenson

and Alspach [1]. In the case of linear systems, the noise processes associated with the
plant and measurement are assumed known and nonGaussian. The probability3 density function of each noise process is approximated by a Gaussian sum; that is, a
weighted sum of Gaussian density functions. The Gaussian sum approximation is

written as

M

PGs(X) = Z ,N[',,fl (1)

where

M -a=1; a. O0 fori=1,2,...,M (2)
i--1

and

N[pi,a] = 1 e-- )(T'7r (3)

This work is supported by the Office of Naval Research, grant N00014-89-J-3123.



1
For sufficiently large M, any density function can be closely approximated by a

Gaussian sum. A, long as condition (2) holds, the Gaussian sum is always a valid

density function.

Alternate Gaussian Sum Devtiopment 1

In developing their estimator, Sorenson and Alspach begin by directly

representing the plant and measurement noise processes by Gaussian sums. The 3
conditional density p(xk I Zk) of the current state vector xk given the current

measurement sequence Zk = {z, z2,.. ., ZkJ is then updated using Bayes' rule.

A major problem with their development is that the number of terms in the

Gaussian sum increases at each iteration of their estimator. This problem of growing

memory can be avoided by the following alternate development of the Gaussian sum

density approximation. The nonGaussian noise process or input signal is modeled as i
the sum of two statistically independent random processes

u = b + n (4)

The first term, b, is a semi-Markov process with state transitions governed by the

transition probability matrix of a conventional Markov process. However, the

amount of time spent in state i before the next transition to state j is a random

variable [4]. Its values lie within a fixed set of discrete values, characterized by a

delta probability density function

p(b) Pi 6(b - b,) (5)

with

EPi=I; Pi>_O fori=l,2,...,M (6)
i=1

This process can be thought of as a randomly-switching bias, each bias value bi 1
having probability Pi. The second term, n, is a zero mean Gaussian process with

variance ol. The variance switches at the same time the bias switches. This I
switching variance can be thought of as changing the power of the Gaussian process.

With both densities known, and using the convolution relationship between u, n, 3
and b, the density function of u is given by

pgs(U) = E PN(b,, a] (7)
i= b

Thus, the nonGaussian density function of u can be modeled as a Gaussian sum. The 1

I



I
weight of each Gaussian term is the probability of the ith biasing term. By allowing

only a fixed number of bias values, the number of terms in the Gaussian sum at each

iteration of the estimator is fixed, thereby eliminating the growing memory problem.

PosSelecting the parameters Pi, bi, and ai in (7) to obtain the "best" approximation

PGs to some actual nonGaussian density function p is accomplished by means

minimizing the Lk norm k= fPI 'f , ol d(

iP- PGS I )- -PiNtbi, i du (8)

This curve fitting exercise can be done off-line using several values of M until a

I suitable trade-off between minimum norm and minimum M is obtained.

Development of a Modified Gaussian Sum Adaptive Filter

A modified Gaussian sum adaptive filter is now developed for a general linear
system with a nonGaussian input signal and Gaussian plant and measurement noise3 processes. The system is modeled in standard discrete-time state-space form as

Xk+1 = DXk + rUk + TtwA. (9)
zk= Hxk + Duk + Vk (10)

Uk = bk + nk (11)

where x is the state vector

z is the measurement vector

w is a zero mean white Gaussian plant noise process

with covariance Q

v is a zero mean white Gaussian measurement noise

3process with covariance R. independent of w

-t, F, t, H, D are the respective constant transition matrices

u is the vector Gaussian sum signal model (4) of

the actual 'onGaussian input signal, comprised of

semi-Markov bias vector bk, and zero mean white

Gaussian noise nk with covariance Sk

The optimal estimate of the state vector is found from the conditional mean as

00

E xkI Z
4k+1 = E(ki(Z+J= f 0Xk+ P(Xk+I Zk+l) dXk+l (12)

where Zk+I is the measurement sequence {z, z2, ... , Zk+1}. Using Bayes' theorem,

the conditional density function of (12) can be written as



P(xk+lIZk+l) P(Ok+, Z+1) (13) 1p(X~llt'+) = P(Zk'+l)

The bias vector bA& and covariance matrix Sk are explicitly brought into (13) by
considering the joint density p(x&+I, Zk+l) to be a marginal density found from

P(Xk+1, Zk+l, bt, Sk) by summing over the bk and Sk terms I
M I
Ep(Xk+l, Zk+l, bi, S,)

P(Xk+l I Zkp(1l) _.. i=1 (14)

After some additional algebraic manipulation, the optimal estimate of (12) becomes

M .
4+ - E.2'+l p(b,,S J Z ;+,) (15)

i=1

where 4+1 is the conditional mean estimate of Xk+1 given that bk = bi and S1 = Si,

denoted by

=k+l J PXk+ P(+1 I Zk+l,b, Si) dxk+l (16)

and the weighting factor p(bi, SiI Zk+,) is the probability that bA = bi and Sk = Si 3
given the current measurement sequence. The overall estimate of (15) is then a

weighted sum of individual estimates, each based on a particular set of parameters bi

and Si.

Each estimate (16) is found by a modified Kalman filter. Inserting (11) into (9)

and (10) produces

Xk+1 ='tk + rbk + Wk (17)

Zk = Hxt + Dbk + Vk (18) I
where

w, = rnt + 'Wk (19) 3
v = Dn, + Vk (20)

Letting wk, Vk, and nk be statistically independent zero mean white Gaussian 1

processes, and recognizing that E[w' - = 0, the Kalman filter equation for (15) is

i+, = 4, + rb, + K,+,[z,+l - Db, - H(NA + rbi)] (21)

with covariance and gain equations I
= '+ P = + rsirT  IQP (22)

Kk+l = Mk+1 HT(HM +1 HT + DSD T + R)-1 (23)
Ps (IKI(,+H)Mti1  (24) I



I
The structure of the overall adaptive filter is a bank of Kalman filters operating

in parallel, with each individual estimate multiplied by its own weighting term

probability. This is the basic structure as outlined in Magill [21, with some

modifications as will be shown. The filter based on the parameter set that most

closely matches the actual parameters of the modeled system will have a weighting
term that tends closer to one, while the weights of the mismatched filters will tend
towards zero.

Using Bayes' rule and writing Zk+l as {Zk, Zk+l}, the weighting term becomes

p(bi, Si I Zk+,) = p(zk+* I b,, Si, Zk) p(bi, Si I Zk) (25)i P(Zk+l I zk)

The denominator term is independent of i and is a scale factor that ensures that the
sum of the weights (25) at each iteration is equal to one. The second term of the

numerator can be rewritten to explicitly include the sample time for the bias and
covariance terms

p(bi, Si I Zk) = p(bk+l = bi, Sk+l = Si I ZA) (26)

Using Bayes' rule and the definition of marginal densities, (26) can be written as

p(bi, SiI Zk) =E p(bk+l = bi, Sk+l = SiIbA = b, Sk = S) p(bk = b, Sk = SiI Zk) (27)j=l

The following notation will be used to express the two terms of the summation (27)

IOi, j = p(bk+l = bi, Sk+l = SiIbk = b, Sk = Sj) (28)

wi = p(bk = b, Sk = S.i Z) (29)

The density function of (28) is a Markov transitional probability matrix [4); that is,
SOi, j is the conditional probability that b = bi and S = Si at time k + 1, given that

b = bj and S = Si at time k. The density function of (29) is of the same form as (25)3 and is just the previous weighting term at the previous value of time k.

Necessary Condition for Effective Estimation

The first term of the numerator of (25) is of prime importance in determining
whether or not the adaptive filter will work properly for a given system. It can be5 modeled as a Gaussian density if the bias and covariance terms switch slowly
compared to the sample interval k. This assumption will be made here and has been3 verified by extensive simulation and analysis by Moose and Wang [3]. This

conditional density is

3



P(zk+l I b,, S,, Zk) = N[H(4i' + rb,) + Dbi, HM'+1 H T + DSD T + R] (30) 1
Th ith measurement residual from (21) is I

rk+l = Zk+1 - Dbi - H(tik' + rb,) (31) !

The mean and covariance of (30) are readily available from the residual (31) and the l

Kalman gain (23). Essentially, the measurement residual of the matched filter will

have the smallest expected value (typically, zero mean), while the residuals of all the

mismatched filters will be biased. Under the Gaussian assumption, the probability of

the matched filter will be the largest among all the filters.

For some -vstems, however, the statistical steady-state value (that is, the steady- i
state value oi expected value) of the rrneasurem - residual of each filter goes to

zero. None o residuals are biased. T 'refore, t_ adaptive system cannot detect £
which filter ha he correct parameter set and the weights all tend to the same value.

The statistical steady-state (SSS) value of the measurement residual is a function

of the dc gain of the system transfer function [5]. If the dc gain of the system is zero,

then the SSS value of the residual is zero. This condition provides a simple test as to

whether or not this adaptive system will work properly for a particular system.

Alternate Estimation Procedures I
A possible solution to this problem is to first determine if an alternate

measurement provides a nonzero dc gain. For example, if in the zero dc gain system

acceleration measurements are taken, changing to velocity measurements may

provide a nonzero d ain. If the actual sensors )roducing these measurements 3
cannot be change tegrating the acceleration measurement data to produce

approximate-veh. asurement data may allow the adaptive system to work.

To illustrate this point, consider a general modal structure containing modes

which are closely spaced in frequency and heavily damped. The input to the system

is a nonGaussian stochastic FM signal, not directly measurable by the system. The

model of *his system follows (9-11). Checking the dc gain of this system using an

acceleration measurement (with no noise) 3
G(¢ = = Go= H(I-'T -11 + D (32) 3

gives us zero dc gain. Since the SSS value of the measurement residual is a function

of this dc gain

= [I - H,(I - (I + K,,H),1)-g,(]Go(uk - b,) (33) U
I



I
the residuals for all filters go to zero when the system reaches SSS. Therefore, the

residual density function p(zk+l Ib, S , Zk) cannot discern which filter is the matched

filter and all the weighting terms (25) become equal.

Changing this modal system to output velocity measurement data produces a
transfer function with a nonzero dc gain. Typically, changing the actual system
cannot be done in practice. However, given a large signal to noise ratio between the

input signal and measurement noise, a good approximation of the velocity

measurement data can be generated by integrating the acceleration measurementUdata from the original system using a first or second order discrete time integrator.
Redesigning the residual density function to be based on the velocity measurement
model, while actually using approximate-velocity measurement data, will cause the

weighting terms to properly select the matched filter.

I Simulation Analysis of Alternate Adaptive Filters

Several simulations were run to test the performance of the Gaussian sum filter3 under various conditions. One simulation implements the velocity measurement

system with nonzero dc gain, and uses an adaptive filter design based on the velocity
I measurement model. This serves as a benchmark for comparison with the other

simulations.

A second simulation implements the acceleration measurement system with zero

dc gain. Two adaptive filters are used. One filter is designed based on the

acceleration measurement model, and produces the individual state estimates from

(21). The second filter is designed based on a velocity measurement model, but uses
approximate-velocity measurement data generated from a discrete time integrator.3 This filter is used to produce the proper weighting terms (25). The overall

performance is not as good as the filter of the first simulation. The second filter3 could also be used to generate the individual state estimates, but the performance is

no better than the first filter since the same acceleration measurement data is used to3 generate the approximate-velocity measurement data.

A third simulation implements a dual measurement system, where the

measurement is comprised of two models: the acceleration measurement model, and

the velocity measurement model. The adaptive filter is designed based on the dual
measurement model and uses acceleration measurement data plus approximate-3 velocity measurement data. This filter can be tuned to perform better than the filter

of the second simulation, but not as well as the filter of the first simulation.

Determination of Approximate Parameter Values3 As mentioned previously, the system cannot directly measure the input signal.

Referring to the stochastic FM input, the bias parameters bi used to model its density

I



as a Gaussian sum are based on the amplitude of the signal. For good performance,

the adaptive filter must have some approximate knowledge of this amplitude.

One possible method of determining amplitude information [5] is to monitor and

process the measurement residual of the zero-bias filter (the individual filter with a

bias parameter value of zero) of the weighting term adaptive filter of the second I
simulation described previously. Setting b_0 -- 0 in (31) gives

rk+ = zk+l- HPx (34)

The velocity measurement model, given below, of the weighting term adaptive filter m

is of the same form as (10), except D =0 

zk+, = HTk+l + v+l (35)

Using (9), (35), and setting the error e = (.. - ), the zero-bias residual (34)

becomes 3
r°+I = H'Iek + HrUk + HPwk + Vk+1 (36) 5

Given that the input signal Uk is much larger than both wk and Vk+l, and then

premultiplying both sides of (36) by (Hr)1, the zero-bias residual is processed as I

Uk+1 = (Hr)'ro+ - (Hr)"H4Pe° + uk (37) m
If the expected value of the first term on the right hand side of (37) is close to zero, 3
then the expected value of the processed zero-bias residual can be approximated by

E[k+I] -- Uk (38)

To approximate this expected value, a smoothed version of uk+l is found from a first m
order discrete time smoother

U'+1 = ctois + (1 - C°)Uk (39)

The peak values and power of an n-sample window of (39) are calculated and used to

periodically update the bias parameters in the remaining nonzero-bias filters in the m
adaptive filter bank. This could serve as a suboptimal method of tuning the bias

parameters to their "optimal" values when the input signal amplitude is originally

unknown, or if the signal makes large changes in amplitude at unknown times. I
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Abstract.
• 2is A computational simplification of the Ho-Kalman minimal realization procedure, recently referred to as

-' the Eigensystem Realiation Algorithm (ERA), is proposed. According to the simplified algorithm,
instead of performing the singular value decomposition (SVD) of the Hankel matrix and multiplying

ider i his with matrices containing left and right singular vectors, a minimal system state space representation
may be obtained by simple selecting appropriate rows or columns from the Hankel matrix. The

A . ia rix obtained state representation is in either Pseudo-Controllable or Pseudo-Observable form.
In pir "Introduction.

pair itmina
In their seminal pper [1], o and Kalman suggested a procedure for calculating a minimal state space

* representation R- A,B,CJ of a MIMO system from given Markov Parameters Yj , defined by

. L t Y = CA'B ; i = 0 , I N. Since publication of that paper a number of papers and textbooks.
[1]-[8], have referred to this minimal realization procedure and have suggested slightly modified
versions. Relatively recently, this algorithm has been given considerable attention , particularly in the
area of large flexible structures, where it has received a name ERA (Eigensystem Realization
Algorithm), [9]-[12]. In all these papers different versions were suggested , but all of them basically
follow the following procedure.
1: Define Markov Parameters, i.e. (p x m) matrices Yi , of an nth order MIMO system with m inputs
and p outputs. [,::ofo

(2) 2: Build the (rpx rm) Hankel matrix H, given by, H, = for an arbitrary integer r.
UY '-I "Y 2r-I

Isteni 3: Increase the r sequentially, until the rank of H, does not increase, i.e when p+HI = pjH. + , then
n = P Hrl represents the order of a minimal state space representation.

-pair is 4: Perform the SVD of Hr, i.e. calculate matrices U, En and V satisfying

the .0
the H =U : V  w here E, = d iagJp .... ,,, , >.0

5: The matrices A, B, C in a minimal realization are given by A = (-En" /2 UI Hr V1 (rY"2'

e f A. B = (E.) 112 v 1  - I1...yI.r

= EIwhere H,"= : and UI,V,, U11 and V11 are (rp x n), (rm xn),
C .- Ul (E) 1 12  where.Y. (nx m) and (p x n) matrices respectively.
U1 contains the first n columns from " and V contains the first n columns from V. Similarly,U11
contains the first p rows from U1 and V11 contains the first m columns from (V1 )T.~Simplified ERA.

The computational simplification in ERA suggested in this paper is based on the use of pseudo
t controllability/observability indices, introduced recently. Consequently, as explained in [131-[16], there

-.ices are more equivalent state space representations in pseudo controllable/observable forms corresponding

as the to the given Markov parameters, Yi. Thus. after calculating the rank of H,,(steps 1,2,3 of the above
malgorithm), the only calculations that should be done, in the case of representing the system in a

the pseudo controllable form are : (i.) Select n appropriate columns from H, with locations v, ... , ; JC
rzous < £.+z ,into the (rpxn) matrix H1 and select n columns from Hn with locations m+i,.. ,

_s into the (rpxn) matrix H2. (ii.) The system matrix Ac in a pseudo controllable form is given by the
i115, least square solution of

-IA c =H 2 or .4c =( -I (1)
The input matrix Bc is fixed and is always given by Bc  0 , while the output matrix CC
contains the first p rows from H1 . Similarly, in order to obtain a state space representation in a
pseudoobservable form , the procedure is dual to the procedure for{AC,Bc,Col. Obviously, the
calculation required by (1), is much simpler than those required in the steps 4-5 of the original ERA
algorithm. Particularly, when the system order is known or assumed calculation of SVD is not
required. The n location numbers &, .... ,C defining the columns of H, to, be selected in matrices I,

and 112 are uniquely related to the assumed set of admissible pseudo controllability indices,
respectively, [15].

U This work is supported by the Office of Naval Research under Grant N00014-89-J-3123.
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Consider the example given in [f17), pp 491-492: Example
Given Markov Parameters Yi' =0 , 5: - 1 ] [ [ I ] t ] 4 [2 ]

The order of the minimal realization and the number of inputs and outputs are n 4, m" 2 a

p = 2. The possible sets of pseudo controllable indices are {1,3),{2,2) and t3,11 . The Hankel mat
H and the locations {a4) corresponding to the sets of -. udo controllability indices are:Y~O... Y 2!
H= |: . p.c.i: {1,3} { 2} (3, 1

h [.."iS locations: 1, 2, 4, 6 }1.2,3, 4 { 1, 2,3, 5

The matrices H, and f 2 are formed using the above location indices, as defined in the earlier section.
It is verified that the matrix H, in the case of p.c.i 42,2) is not of full rank, therefore, this set of p.c.i 
is not admissible . According to (1), the pseudo controllable forms {AC,Bc,Cc} corresponding to pseudo
controllability indices 41,3) and 43,1) are :

I10 01 1 0o 1 I
p.c.i (1,3: Ac= o 2:2 BC= 0 Cc=[. I I] I

11 0 0 0 00 0 011

I
00 1 1 00

0 2 0 21 1 -11 c
p.c.i{(3,1}: Ac ] Bc= 0 c

0 0 1 0 L0 0
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